Уравнение гиббса и его анализ

Анализ уравнения Гиббса.

1. DH 0, то DG О DS О

эндотермическая с уменьшением энтропии — реакция невозможна;

Во всех остальных случаях DН > О, DS > 0 и DH О ) вынужденно.

Согласно уравнению DG=DН — ТDS при понижении температуры преобладает энтальпийный фактор, при повышении наоборот энтропийный. Вот почему при одних температурах реакция будет протекать слева направо (DG О. Т.е. процесс

в) При очень высоких температурах величина T∆S становится значительно больше DН и тогда знак DG определяется членом TDS

Следовательно, при очень высоких температурах энтропийный фактор преобладает, над энтальпийным. Поэтому для осуществления процессов ассоциации нужны низкие температуры, а для разложения — высокие температуры. При высоких температурах возможно самопроизвольное протекание эндотермических реакций.

г) Если соблюдается равенство DН = TDS, тo стремление частиц к упорядочению, определяемое величиной DН и стремление к беспорядку, определяемое величиной TDS, компенсируют друг друга т.е. совокупность веществ находится равновесии DG = О;

Таким образом необходимым условием протекания процесса является отрицательное по знаку изменения энергии Гиббса. Если DG>О, то такой процесс невозможен. При одинаковых знаках DН и DS, процесс обратимый DG=О.

2.2 Классификация химических реакций в химической кинетике. Гомо- и гетерогенные реакции. Скорость химической реакции. Факторы, влияющие на скорость химической реакции. Зависимость скорости химической реакции от концентрации реагирующих веществ. Закон действия масс. Константа скорости. Зависимость скорости реакции от температуры. Правило Вант – Гоффа.

Раздел химии, посвященный изучению скоростей и механизмов химических реакций называется химической кинетикой.

Скорость химических реакций изменяется в широких пределах. Так, для заверения химических процессов, происходящих при взрыве тротила, нитроглицерина, гремучей ртути и др. достаточно миллионных или даже десятимиллионных долей секунды, в то время как ощутимый результат ржавления железа можно обнаружить только за время, измеряемое сутками. Многие геохимические процессы, например превращение древесины в уголь, реализуется за промежутки времени, измеряемые миллионами лет.

Основные понятия.

Система — совокупность веществ, отделенных от внешней среды поверхностью раздела.

Если система однородна и не заключает в себе поверхности раздела между частями системы, отличающимися по физико-химическим свойствам, то ее называют гомогенной (гомос- греч. равный).

Систему, состоящую из отдельных частей, отличающихся по свойствам и имеющих поверхности раздела называют гетерогенной (гетерос — различный) (рис.2.3).

Состояние системы определяется совокупностью физико-химических свойств, которыми обладает система в данный момент.

Если состояние системы в результате самовольно протекающих процессов внутри ее не претерпевает никаких изменений, то система находится в равновесном состоянии. Например, процессы испарения, конденсации, растворения, кристаллизации.

Параметры, при которых наблюдается такое состояние называются равновесными.

Фаза — совокупность всех однородных по составу и физико-химическим свойствам частей системы. При переходе фаз через поверхность раздела свойства системы изменяются скачкообразно (рис.2.4).

Одним из основных понятий в химической кинетике является

Скорость химических реакцийизменениеконцентрации реагирующих и образующих веществ за единицу времени, в единице объема для гомогенных реакций и в единице поверхности для гетерогенных.

концентрации обозначается [ ] или С и чаще выражается в .

Естественно, что концентрации исходных веществ (С) уменьшаются, а концентрации продуктов реакции возрастают (рис.2.5).

— концентрация

— время

Двойной знак в этом равенстве зависит от того, о каких концентрациях идет речь: исходных веществах или продуктах реакции.

Необходимым условием осуществления химического взаимодействия между двумя молекулами должно быть их столкновение. Столкновение молекул в некотором реакционном пространстве при заданной температуре происходит тем чаще, чем больше этих молекул. Поэтому скорость химической реакции зависит от концентрации реагирующих веществ. По мере уменьшения концентрации исходных веществ во времени скорость реакции падает (рис.2.5).

Рис. 2.5 Изменение скорости химической реакции

В 1865 г. профессор Н.Н.Бекетов впервые высказал гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции.

Эта гипотеза нашла подтверждение в законе действия масс, который был установлен в 1867 г. двумя норвежскими химиками К. М. Гульдбергом и П. Вааге.

Дата добавления: 2015-09-07 ; просмотров: 1521 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

УРАВНЕНИЕ АДСОРБЦИИ ГИББСА

Выше (п. 2.4) мы пришли к выводу, что процесс адсорбции обусловлен снижением поверхностного натяжения. Очевидно, чем в большей степени ПАВ снижает поверхностное натяжение, тем большей должна быть его адсорбция. Напротив, ПИВ должна быть присуща отрицательная адсорбция.

Исходя из второго закона термодинамики американский ученый Дж. Гиббс в 70х гг. XIX в. вывел важное уравнение, связывающее величину адсорбции со способностью растворенного вещества изменять поверхностное натяжение раствора:

(3.1)

где Гi, избыточная адсорбция i-го компонента (см. 2.10), ci его молярная концентрация в растворе, Т температура, при которой происходит адсорбция, R газовая постоянная, изменение поверхностного натяжения раствора при изменении концентрации на dci.

В такой форме уравнение Гиббса применяется для разбавленных растворов. Вы, очевидно, помните, что для концентрированных растворов концентрацию нужно заменить активностью:

(3.2)

Уравнение Гиббса было выведено теоретически. В дальнейшем оно было подтверждено экспериментально МакБеном методом среза тонких слоев с последующим их химическим анализом. Аналогичные исследования были проведены Сазаки с использованием метода радиоактивных индикаторов.

Проанализируем уравнение Гиббса.

Если 0, т. е. наблюдается положительная избыточная адсорбция iе вещество концентрируется на поверхности раствора; если >0, то Гi

Рис. 3.2. Определение избыточной адсорбции

Рис. 3.3. Изотерма адсорбции

Значение избыточной адсорбции для любой концентрации

сi ZiГiсi ZiГi
c1 1Z1Г1c4 4Z4Г4
c2 2Z2Г2
c3 3Z3Г3

ПОВЕРХНОСТНАЯ АКТИВНОСТЬ.

ПРАВИЛО ДЮКЛО-ТРАУБЕ

Из уравнения Гиббса следует, что характеристикой поведения вещества при адсорбции является величина производной , однако ее значение изменяется при изменении концентрации (см. рис. 3.2). Чтобы придать этой величине вид характеристической постоянной, берут ее предельное значение (при с 0). Эту величину П. А. Ребиндер (1924) назвал поверхностной активностью g:

(3.4)

[g] = Джм 3 /м 2 -моль = Джм/моль или Н-м 2 /моль.

Чем в большей степени уменьшается поверхностное натяжение с увеличением концентрации адсорбируемого вещества, тем больше поверхностная активность этого вещества, и тем больше его гиббсовская адсорбция.

Поверхностную активность можно определить графически как отрицательное значение тангенса угла наклона касательной, проведенной к кривой =f(c) в точке ее пересечения с осью ординат.

Таким образом, для ПАВ: g > 0; 0. Для ПИВ: g 0, Гi

2. В гомологическом ряду прослеживаются четкие закономерности в изменении поверхностной активности (g): она возрастает по мере увеличения длины углеводородного радикала.

На основании большого экспериментального материала в конце XIX в. Дюкло и Траубе сформулировали правило:

Поверхностная актив­ность предельных жирных кислот в водных растворах возрастает в 33,5 раза при удлинении углеводородной цепи на одно звено (группу –CH2).

На рис. 3.4 приведены изотермы поверхностного натяжения для ряда кислот.

Рис.3.4. Изотерма поверхностного натяжения некоторых кислот

1 СН3СООН – уксусная кислота (nс=1); 2 СН3СН2СООН – пропионовая кислота (nс =2); 3 СН3(СН2)2СООН – масляная кислота (nс =3); 4 СН3(СН2)3СООН – изовалериановая кислота (nс = 4); 5 СН3(СН2)4СООН – капроновая кислота (nс =5); nс – число атомтов С в углеводородном радикале.

Рис. 3.6 Ориентация молекул ПАВ на поверхности водного раствора

а при малых концентрациях; б при умеренных концентрациях; в в насыщенном адсорбционном слое.

При малых концентрациях углеводородные цепи, вытолкнутые в воздух, «плавают» на поверхности воды, тогда как полярная группа погружена в воду (рис. 3.6а), такое положение возможно из-за гибкости углеродной цепи. С ростом концентрации число молекул в поверхностном слое увеличивается, цепи поднимаются. Какие-то из них принимают вертикальное положение (рис. 3.6б). В насыщенном адсорбционном слое поверхность воды оказывается сплошь покрытой «частоколом» из вертикально ориентированных молекул ПАВ (рис. 3.6в), значение поверхностного натяжения в этом случае приближается к значению, характерному для чистого жидкого ПАВ на границе с воздухом.

Из-за вертикальной ориентации молекул ПАВ в поверхностном слое максимальная адсорбция ( ) не зависит от длины «хвоста» (углеводородного радикала), а определяется только размерами поперечного сечения молекулы, которые в гомологическом ряду остаются неизменными.

Экспериментально найденная величина дает возможность рассчитать поперечный размер молекулы (So).

Предельная избыточная адсорбция ПАВ равна:

(3.5)

где количество ПАВ в поверхностном слое. Так как поверхностный слой полностью заполнен молекулами ПАВ,

(3.6)

где Na — число Авогадро.

Подставляя полученное значение S1,2 в уравнение (3.5), получаем

или (3.7)

Так было найдено, что поперечный размер So молекул всех жирных кислот равен 20 * 10 -16 см 2 , а предельных спиртов 25 * 10 -16 см 2 . Из величины предельной адсорбции была найдена также длина молекулы .

Масса 1 см 2 поверхностного слоя равна

, (3.8)

где М молярная масса ПАВ.

В то же время плотность

, (3.9)

так как объем 1 см 3 поверхностного слоя равен . Из формул (3.8) и (3.9) следует:

(3.10)

Экспериментальные данные показали, что длина молекулы ПАВ пропорциональна числу атомов углерода в углеводородном радикале nс, и нм для всего ряда. Величина 0,13 нм близка к диаметру атома углерода.

Таким образом, размеры молекул впервые в истории химии были определены коллоидно-химическим методом. В дальнейшем эти результаты были подтверждены другими методами.

УРАВНЕНИЕ ШИШКОВСКОГО

В 1908 г. киевский ученый Б. А. Шишковский эмпирическим путем получил уравнение, связывающее поверхностное натяжение водных растворов ПАВ с их концентрацией:

(3.11)

где поверхностное натяжение воды; поверхностное натяжение раствора; с концентрация раствора; В константа, мало зависящая от природы ПАВ внутри данного гомологического ряда; К удельная капиллярная постоянная, которая увеличивается в 33,5 раза при удлинении углеводородного радикала на одно звено (группу СН2).

Для того чтобы выяснить физический смысл постоянной В, обратимся к.уравнению Гиббса:

или

Разделим переменные и примем, что

Интегрируем это уравнение, принимая во внимание, что . величина постоянная:

(3.12)

где А постоянная интегрирования.

Уравнение (3.12) получено в результате преобразования уравнения Гиббса для предельной адсорбции. Теперь для этих же условий запишем уравнение Шишковского, принимая во внимание, что максимальная адсорбция может быть достигнута при достаточно больших концентрациях ПАВ.

Тогда с >> 1, Кс >> 1 и 1 + Кс Кс и

(3.13)

Сравнивая уравнения (3.13) и (3.12), видим, что

(3.14)

Теперь становится понятным, почему величина В в уравнении Шишковского остается постоянной в пределах одного гомологического ряда.

Однако смысл удельной капиллярной постоянной К пока остается неясным

ТЕОРИЯ МОНОМОЛЕКУЛЯРНОЙ

АДСОРБЦИИ ЛЕНГМЮРА

Отметим основные положения этой теории.

1. Адсорбция мономолекулярна.

2. При адсорбции устанавливается динамическое равновесие, которое можно рассматривать как квазихимическое. В условиях равновесия скорости процессов адсорбции и десорбции равны.

Константа адсорбционного равновесия

,

где кадс константа скорости адсорбции; кдес константа скорости десорбции.

Исходя из данной теории было выведено уравнение, которое мы приводим без вывода:

(3.15)

где максимальная адсорбция ПАВ; Г адсорбция при концентрации с; К константа адсорбционного равновесия.

Зависимость величины адсорбции от концентрации представлена на рис.3.7.

На кривой четко видны три участка:

I участок прямая линия, выходящая из начала координат. Действительно, из уравнения Ленгмюра (3.15) при малых концентрациях Кс > 1 и 1 + Кс Кс. Следовательно,

II участок соответствует криволинейной части графика и описывается полным eравнением Ленгмюра (3.15).

Рис.3.7. Зависимость адсорбции от концентрации ПАВ.

Чтобы найти постоянные в уравнении Ленгмюра, его следует привести к линейной форме. Для этого правую и левую части уравнения надо «перевернуть»:

(3.16)

Умножим обе части уравнения (3.16) на с:

(3.16)

На рис. 3.8. показан график .

Тангенс угла наклона прямой к оси абсцисс

Отрезок, отсекаемый прямой на оси ординат,

Рис.3.8. Зависимость величины с/Г от концентрации ПАВ.

Доказано, что К в уравнении Шишковского (удельная капиллярная постоянная) и К в уравнении Ленгмюра (константа адсорбционного равновесия) это одна и та же величина.

Построив график , можно найти предельную адсорбцию и константу адсорбционного равновесия К.

Так как адсорбция рассматривается как псевдохимическая реакция, на основе химической термодинамики можно записать

(3.18)

где Аmах работа адсорбции.

Шишковский эмпирическим путем установил, что константа К увеличивается в 33,5 раза при удлинении цепи на одно звено –СН2.

Напишем выражение для разности работ адсорбции двух соседних членов гомологического ряда.

= 8,31 * 298 * In 3,5 3,2 кДж/моль,

где n число атомов углерода в углеводородном радикале.

Это означает, что для перевода каждой СН2группы из поверхностного слоя в объемную фазу надо затратить 3,2 кДж/моль энергии. Это работа раздвижения диполей воды на величину объема СН2группы величина аддитивная и одинаковая для различных рядов алифатических предельных соединений. Постоянная разность работ адсорбции для двух соседних членов превращается в постоянное отношение (33,5), фигурирующее в правиле ДюклоТраубе. Сущность этого правила, таким образом, заключается в том, что работа адсорбции на каждую СН2группу является постоянной, близкой к 3,5 кДж/молъ.

В заключение отметим, что помимо уравнения Гиббса, Шишковского и Ленгмюра существует уравнение Фрумкина, позволяющее рассчитать изменение поверхностного натяжения в результате адсорбции:

(3.19)

ЗАКЛЮЧЕНИЕ

Адсорбция поверхностно-активных веществ (ПАВ) на поверхности «жидкий растворгаз» самопроизвольный процесс, обусловленный уменьшением поверхностного натяжения. Для поверхностно-инактивных веществ (ПИВ), повышающих поверхностное натяжение, характерна отрицательная адсорбция.

Основным уравнением адсорбции является уравнение Гиббса, связывающее величину избыточной адсорбции с концентрацией ПАВ и его поверхностной активностью. Кривая, выражающая зависимость поверхностного натяжения от концентрации ПАВ при постоянной температу­ре, называется изотермой поверхностного натяжения. Тангенс угла наклона к оси абсцисс касательной к изотерме поверхностного натяжения при с 0 позволяет определить поверхностную активность. Аналитическим выражением изотермы поверхностного натяжения является уравнение Шишковского, выведенное на основе экспериментальных данных. Если известны постоянные этого уравнения и поверхностное натяжение растворителя, можно рассчитать поверхностное натяжение раствора заданной концентрации.

Поверхностная активность ПАВ, согласно теории Ленгмюра, обусловлена дифильным строением их молекул: по­лярные группы втягиваются в глубь фазы, а неполярные углеводородные части выталкиваются в неполярную среду (воздух, газ), снижая тем самым поверхностное натяже­ние. С увеличением углеродной цепи на одну СН2группу поверхностная активность увеличивается в 3-3,5 раза (правило ДюклоТраубе). Исходя из теории Ленгмюра, были впервые рассчитаны площадь, занимаемая одной молекулой, и длина молекулы ПАВ.

Зависимость величины адсорбции ПАВ от концентрации выражается уравнением Ленгмюра, выведенным исходя из представлений о скоростях процессов адсорбции и десорбции. Соответствующий график Г = f(с) называется изотермой Ленгмюра.

Изменение поверхностного натяжения в зависимости от адсорбции рассчитываются по уравнению Фрумкина.

ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1. Какие вещества называются поверхностно-активными, поверхностно-инактивными?

2. В чем состоят особенности строения молекул ПАВ и ПИВ и их адсорбции?

3. Как зависит поверхностное натяжение от концентрации ПАВ в растворе?

4. Что называется поверхностной активностью? Как ее можно определить графически и аналитически?

5. В чем заключается правило ДюклоТраубе?

6. Как графически и аналитически можно определить предельную адсорбцию?

7. Как рассчитать площадь, занимаемую молекулой, и толщину поверхностного слоя?

8. Для водных растворов изоамилового спирта константы уравнения Шишковского: В = 21,12 * 1СГ 3 Дж/м 2 ; К = 42,0 м 3 /кмоль. Поверхностное натяжение чистой воды при заданной температуре равно 72,9 * 10 -3 Дж/м 2 :

а) определите поверхностное натяжение растворов концентраций: 0,012; 0,016; … 0,032 кмоль/м 3 ,

б) постройте изотерму поверхностного натяжения,

в) определите графически поверхностную активность спирта,

г) по уравнению Гиббса вычислите адсорбцию спирта для заданных в п. а) концентраций,

д) постройте изотерму адсорбции и определите графи чески предельную адсорбцию,

е) определите площадь, занимаемую одной молекулой спирта в поверхностном слое.

9. Сравните поверхностную активность этанола и н-бутанола в водных растворах одинаковой концентрации.

10 Изотерма адсорбции ПАВ описывается уравнением Ленгмюра Г=Гmах*(Кс/(1 + Кс)). Найдите графическим методом константы Гmах и К.

11. Предельная адсорбция пропионовой кислоты равна 4,18 * 10 -6 моль/м 2 . Рассчитайте значение константы В в уравнении Шишковского, при стандартной температуре.

Закончив изучение главы 3, вы должны

1. понятия «поверхностноактивные» и «поверхностно-инактивные» вещества, «поверхностная активность»;

2. от чего зависит поверхностная активность ПАВ;

3. сущность теории мономолекулярной адсорбции Ленгмюра;

4. уравнения Гиббса, Шишковского, Ленгмюра, Фрумкина, какие зависимости каждое из них выражает;

1. строить изотерму поверхностного натяжения и определять графически поверхностную активность;

2. рассчитывать поверхностную активность по уравнению Гиббса;

3. рассчитывать поверхностное натяжение по уравнению Шишковского;

4. строить изотерму гиббсовской адсорбции и определять предельную адсорбцию ПАВ;

5. исходя из предельной адсорбции рассчитывать поперечный размер So и длину молекул .

Лекция №3

План лекции:

1.Поверхностное натяжение — физический смысл.

АДСОРБЦИЯ

Поверхностная энергия стремится самопроизвольно уменьшиться. Это выражается в уменьшении межфазной поверхности или поверхностного натяжения ( s )

Вследствие этого стремления происходит адсорбция.

Адсорбция — процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемной фазой. Т.е. адсорбция может происходить в многокомпонентных системах, в слой переходит тот компонент, который сильнее уменьшает s .

Адсорбент — фаза определяющая форму поверхности, более плотная, может быть твердой или жидкой.

Адсорбат — вещество которое перераспределяется (газ или жидкость).

Десорбция — переход вещества из поверхностного слоя в объемную фазу.

Количественно адсорбцию описывают величиной Гиббсовской адсорбции (избыток вещества в поверхностном слое по сравнению с его количеством в объемной фазе, отнесенный к единице площади поверхности или единице массы адсорбента)

(3.1)

Г i -Гиббсовская адсорбция,

V -объем системы,

с0 -исходная концентрация адсорбата ,

с i — концентрация адсорбата в объеме,

S — площадь поверхности раздела.

Все величины в (3.1) могут быть установлены экспериментально.

Адсорбцию можно рассматривать как процесс превращения поверхностной энергии в химическую.

Выведем соотношение между поверхностным натяжением и химическими параметрами компонентов.

Если объем поверхностного слоя равен 0, то

т.к. внутр. энергия пропорциональна экстенсивным величинам, то:

полный дифференциал от тех же переменных запишется следующим образом:

dU=T dS + S dT + s dS +S d s + å m i dn i + å n i d m (3.3)

Подставляя dU из 3.2 в 3.3, получим:

3.4 и 3.5 — уравнения Гиббса для межфазной поверхности (поверхностного слоя).

Все экстенсивные величины поверхности зависят от площади поверхности , поэтому удобнее относить эти параметры к единице площади поверхности. Разделив уравнение 3.5 на площадь поверхности, получим:

=> (3.6)

Г i — поверхностный избыток компонента i в поверхностном слое (по сравнению с его равновесной концентрацией в объемной фазе), то есть величина Гиббсовской адсорбции.

Уравнение 3.6 — фундаментальное адсорбционное уравнение Гиббса. Это строгое термодинамическое соотношение, написанное для многокомпонентной системы. Однако, практиче ское его использование неудобно. Оно, например, не раскрывает зависимость поверхностного натяжения от адсорбции конкретного вещества при постоянных химических потенциалах других веществ.. Единицы величины гиббсовской адсорбции определяются единицами химического потенциала. Если потенциал отнесен к молю вещества, то величина адсорбции выражается в молях на единицу площади.

Адсорбция конкретного вещества при постоянных химических параметрах других веществ:

Принимая во внимание , что m i = m i o + RT ln ai, m i и m i o — равновесное и стандартное значения химического потенциала адсорбата i , а i — термодинамическая активность адсорбата, d m i = RT d ln ai ,получим :

для Гиббсовской адсорбции:

(3.7)

3.7. применяют только тогда, когда можно использовать концентрации вместо активностей и пренебречь изменениями концентраций других веществ при изменении концентрации одного вещества. Этим условиям удовлетворяет разбавленный раствор относительно данного компонента. В таком растворе при изменении концентрации растворенного вещества практически не изменяется концентрация растворителя. Поэтому для растворенного вещества уравнение 3.7 переходит в широко используемые адсорбционные уравнения Гиббса для неэлектролитов и электролитов

(3.8)

(3.9)

УРАВНЕНИЕ ГЕНРИ, ФРЕЙНДЛИХА, ЛЕНГМЮРА

Для описания процесса адсорбции, помимо фундаментального уравнения адсорбции Гиббса, применяют ряд других аналитических уравнений, которые называются по имени их авторов.

При незначительном заполнении адсорбента адсорбатом отношение концентрации вещества в адсорбционном слое и в объеме стремится к постоянному значению, равному кГ:

Это уравнение характеризует изотерму адсорбции при малых концентрациях адсорбата (рис.3.1, участок 1) и является аналитическим выражением закона Генри. Коэффициент кГ не зависит от концентрации и представляет собой константу распределения, характеризующую распределение вещества в адсорбционном слое по отношению к его содержанию в объемной фазе. Уравнение Генри соблюдается приближенно, но это приближение достаточно для практики.

В более общем виде зависимость адсорбции от концентрации адсорбата можно определить с помощью уравнения Фрейндлиха.


источники:

http://lektsii.org/3-59744.html

http://www.trotted.narod.ru/collchem/lec-3.htm