Уравнение гидроксида лития с солью

Гидроксид лития: способы получения и химические свойства

Гидроксид лития при стандартных условиях представляет собой бесцветные кристаллы. Растворяется в воде.

Относительная молекулярная масса Mr = 23, 95; относительная плотность для тв. и ж. состояния d = 1, 46; tпл = 471◦ C;

Способы получения

1. Гидроксид лития получают электролизом раствора хлорида лития :

2LiCl + 2H2O → 2LiOH + H2 + Cl2

2. При взаимодействии лития, оксида лития, гидрида лития и пероксида лития с водой также образуется гидроксид лития:

2Li + 2H2O → 2LiOH + H2

Li2O + H2O → 2LiOH

2LiH + 2H2O → 2LiOH + H2

3. Карбонат лития при взаимодействии с гидроксидом кальция образует гидроксид лития:

Качественная реакция

Качественная реакция на гидроксид лития — окрашивание фенолфталеина в малиновый цвет .

Химические свойства

1. Гидроксид лития реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2. Гидроксид лития реагирует с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3. Гидроксид лития реагирует с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. С кислыми солями гидроксид лития также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

5. Гидроксид лития взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в растворе гидроксида лития:

Сера взаимодействует с гидроксидом лития только при нагревании:

6. Гидроксид лития взаимодействует с амфотерными металлами , кроме железа и хрома. При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2LiOH + 2Al + 6Н2О = 2Li[Al(OH)4] + 3Н2

7. Гидроксид лития вступает в обменные реакции с растворимыми солями .

Хлорид меди (II) реагирует с гидроксидом лития с образованием хлорида лития и осадка гидроксида меди (II):

2LiOH + CuCl2 = Cu(OH)2↓+ 2LiCl

Также с гидроксидом лития взаимодействуют соли аммония .

Например , при взаимодействии хлорида аммония и гидроксида лития образуются хлорид лития, аммиак и вода:

NH4Cl + LiOH = NH3 + H2O + LiCl

8. Гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Гидроксид лития проявляет свойства сильного основания. В воде практически полностью диссоциирует , образуя щелочную среду и меняя окраску индикаторов.

LiOH ↔ Li + + OH —

10. Гидроксид лития в расплаве подвергается электролизу . При этом на катоде восстанавливается сам литий, а на аноде выделяется молекулярный кислород:

4LiOH → 4Li + O2 + 2H2O

Гидроксид лития. Примеры химических реакции, а также физические свойства щелочи и ее особенности

Что такое гидроксид лития? Это соединение является одним из важнейших термоустойчивых соединений, используемых в производстве для получения различных солей лития. Ионы этого элемента обладают рядом характерных особенностей, которые нашли свое широкое применение в химическом производстве.

Особенности строения атома лития

Литий (Li) является элементом I группы основной подгруппы 2-го периода, и относится к группе щелочных металлов. Его часто называют переходным к щелочноземельным элементам, поскольку он имеет немного меньшую активность, чем следующие представители этой группы, например, натрий (Na) или калий (K).

Атом лития обладает самым маленьким радиусом среди всех щелочных металлов, что обуславливает его химическую активность. Также особую роль играет предшествующая валентному электрону 2s 1 устойчивая электронная оболочка 1s 2 типа гелия, которая создает высокую поляризуемость частицы.

Это свойство лития характеризует возникновение электромагнитных или дипольных полей вокруг атома, что позволяет создавать прочные комплексные ионы вроде [Li(NH3)n] + . Стоит отметить, что при таких свойствах сам атом не подвержен поляризации, что объясняет термическую неустойчивость некоторых его солей, в особенности с комплексными анионами.

Все вышеперечисленные факты объясняют некоторые особенности в физических и химических свойствах гидроксида лития (LiOH).

Физические свойства

Чистый LiOH – очень едкое вещество, способное разрушить стекло и фарфор, поэтому его хранят в парафинированных сосудах. В расплавленном состоянии его можно получить только в никелевых или серебряных сосудах, так как он окисляет большинство металлов и сплавов. Золото является одним из немногих веществ, устойчивых к влиянию подобного соединения.

Само основание, по сравнению с окисью Li2O, химически неустойчиво и уже ближе к 1000 °C в атмосфере водорода H2 разлагается на составляющие (пример 1).

Оксид лития и гидроксид лития в химически чистом состоянии являются твердыми веществами, относительно растворимы в воде, но менее (почти в 5 раз), чем аналогичные соединения следующих представителей группы. Высшая точка растворения у описываемого основания приходится при 100 °C – 17,5 г/100 г растворителя, тогда как, например, у гидроксида натрия (NaOH) — 337 г/100 г и продолжает расти с повышением температуры. В то же время растворимость гидроксида лития практически в 100 раз больше растворимости гашеной извести (Ca(OH)2), у которой такая способность снижается с повышением температуры.

Интересно, что экспериментально удалось получить газообразный LiOH в присутствии паров воды. Его получают путем нагревания оксида Li до 2000 °C, когда после рубежа в 1000 °C давление пара этого соединения увеличивается за счет образования устойчивого родственного основания (пример 2).

Химические свойства

Гидроксид лития кислотой не считается, так как не является амфотерным элементом и не проявляет способности к распаду по типу MeOH ↔ MeO — + H + (где, Me — любой металл I или II группы основной подгруппы), как и другие представители щелочных металлов. Про такие соединения говорят, что они являются очень сильными основаниями, так как константа их диссоциации по принципу MeOH ↔ Me + + OH — очень высокая (Кb, LiOH = 6,75 · 10 -1 ).

Поскольку подобное соединение проявляет сильные основные свойства, оно может вступать в реакции нейтрализации с кислотами, кислотными оксидами и обмена с различными солями (пример 3).

Также характерной реакцией является взаимодействие холодных и горячих концентрированных растворов гидроксида лития с газообразным хлором с образованием гипохлоритов и хлоратов лития (пример 4).

Особенностью данного основания является взаимодействие с горячим раствором перекиси водорода H2O2 с образованием кристаллогидрата перекисного лития Li2O2 в среде этанола, разделяемый в вакууме (пример 5).

Получение

LiOH получают различными способами, одним из которых является непосредственное взаимодействие металла или его оксида с водой по схеме литий → оксид лития → гидроксид лития.

Также применяется гидролиз сульфида, нитрида, фосфидов и других соединений (пример 3).

Реакции обмена растворов солей лития возможны практически с любыми основаниями, например гидроксидом калия (KOH), кальция (Ca(OH)2) и бария (Ba(OH)2), причем с последним реагентом химическое взаимодействие идет практически до конца с сульфатом Li. В первом и втором случае реакция будет оправдана за счет плохой растворимости получаемых солей в растворе LiOH (пример 4), а в третьем — к этому прибавится нерастворимое в воде BaSO4 (пример 4). Стоит отметить, что последний вариант не используется на производстве по экономическим соображениям.

Еще одним примечательным методом получения данного соединения является электролиз раствора хлорида лития LiCl на ртутном катоде. При этом образуется амальгама HgLi, интересная тем, что температура ее плавления гораздо выше (609 °C), чем любого ее компонента. В процессе разложения водой полученного соединения образуется необходимое основание (пример 5).

Особенное промышленное значение имеет реакция разложения карбоната лития гашеной известью, в ходе которого химическое равновесие искусственно сдвигается в правую сторону для более высокого выхода основного продукта (пример 6).

Применение

Гидроксид лития используется при получении стеаратов этого металла для производства водоупорных морозо- и термостойких смазочных материалов. Также применяется в качестве катализатора при изготовлении полимерных материалов и как компонент электролита в различных аккумуляторах.

В пожарной и военной практике гидроксид лития используется как поглотитель углекислого газа (CO2) в противогазах.

Гидроксид лития (LiOH): формула, свойства, риски, применение

Гидроксид лития (LiOH): формула, свойства, риски, применение — Наука

Содержание:

В гидроксид лития Это химическое соединение с формулой LiOH (EMBL-EBI, 2008). Гидроксид лития — неорганическое основное соединение. Он широко используется в органическом синтезе для ускорения реакции из-за его сильной основности.

Гидроксид лития не встречается в природе. Он очень реактивен, и если бы он был в природе, он мог бы легко реагировать с образованием других соединений. Однако некоторые гидроксиды лития / алюминия, которые образуют различные смеси, можно найти в различных минералах.

В 1950 году изотоп Li-6 использовался в качестве сырья для производства термоядерного оружия, такого как водородная бомба.

С этого момента в атомной энергетике США начали использовать большое количество гидроксида лития, что привело к неожиданному развитию литиевой промышленности (Lithium hydroxide, 2016).

Большая часть гидроксида лития образуется в результате реакции между карбонатом лития и гидроксидом кальция (формула гидроксида лития, S.F.). Эта реакция дает гидроксид лития, а также карбонат кальция:

Его также получают в результате реакции оксида лития и воды:

Гидроксид лития использовался в качестве поглотителя углекислого газа в подводной лодке и надувном воздушном шаре в 1944 году.

Физические и химические свойства

Гидроксид лития — белые кристаллы без характерного запаха (Национальный центр биотехнологической информации, 2017). Его внешний вид показан на рисунке 2.

В водном растворе образует кристаллическую жидкость с резким ароматом. Его молекулярная масса составляет 23,91 г / моль. Он существует в двух формах: безводный и моногидрат LiOH.H2O, имеющий молекулярную массу 41,96 г / мес. Соединение имеет плотность 1,46 г / мл для безводной формы и 1,51 г / мл для моногидратной формы.

Его температуры плавления и кипения 462ºC и 924ºC соответственно. Гидроксид лития — единственный гидроксид щелочного металла, который не имеет полиморфизма, а его решетка имеет тетрагональную структуру. Соединение хорошо растворяется в воде и слабо растворяется в этаноле (Royal Society of Chemistry, 2015).

Гидроксид лития и другие гидроксиды щелочных металлов (NaOH, KOH, RbOH и CsOH) очень универсальны для использования в органическом синтезе, потому что они являются более сильными основаниями, которые легко вступают в реакцию.

Он может реагировать с водой и диоксидом углерода при комнатной температуре. Он также может реагировать со многими металлами, такими как Ag, Au, Cu и Pt, поэтому он является важным исходным материалом в металлоорганическом синтезе.

Растворы гидроксида лития экзотермически нейтрализуют кислоты с образованием солей и воды. Они реагируют с некоторыми металлами (такими как алюминий и цинк) с образованием оксидов или гидроксидов металла и образования газообразного водорода. Они могут инициировать реакции полимеризации в полимеризуемых органических соединениях, особенно в эпоксидах.

Он может выделять легковоспламеняющиеся и / или токсичные газы с солями аммония, нитридами, галогенированными органическими соединениями, различными металлами, пероксидами и гидропероксидами. Он может служить катализатором.

При нагревании выше 84 ° C он вступает в реакцию с водными растворами редуцирующих сахаров, отличных от сахарозы, с образованием токсичных уровней моноксида углерода (CAMEO, 2016).

Реакционная способность и опасности

Гидроксид лития — стабильное соединение, хотя оно несовместимо с сильными кислотами, углекислым газом и влагой. Вещество разлагается при разогреве (924 ° C) с образованием токсичных паров.

Водный раствор является сильным основанием, бурно реагирует с кислотой и вызывает коррозию алюминия и цинка. Реагирует с окислителями.

Соединение оказывает разъедающее действие на глаза, кожу, дыхательные пути и при проглатывании. Вдыхание вещества может вызвать отек легких.

Симптомы отека легких часто не проявляются в течение нескольких часов и усугубляются физическими нагрузками. Воздействие может вызвать смерть. Эффект может быть отсроченным (Национальный институт безопасности и гигиены труда, 2015).

Если соединение попадает в глаза, следует проверить контактные линзы и снять их. Глаза следует немедленно промыть большим количеством воды в течение не менее 15 минут с холодной водой.

В случае попадания на кожу пораженный участок следует немедленно промыть не менее 15 минут большим количеством воды или слабой кислотой, например уксусом, одновременно снимая загрязненную одежду и обувь.

Покройте раздраженную кожу смягчающим средством. Перед повторным использованием выстирайте одежду и обувь. При сильном контакте промойте дезинфицирующим мылом и покройте загрязненную кожу антибактериальным кремом.

В случае вдыхания пострадавшего следует переместить в прохладное место. Если не дышит, делают искусственное дыхание. Если дыхание затруднено, дайте кислород.

Если соединение проглочено, не следует вызывать рвоту. Ослабьте тесную одежду, такую ​​как воротник рубашки, пояс или галстук.

В любом случае следует немедленно обратиться за медицинской помощью (Паспорт безопасности материала гидроксид лития, 21).

Приложения

Гидроксид лития используется в производстве литиевых солей (мыла) стеариновой и других жирных кислот.

Эти мыла широко используются в качестве загустителей в консистентных смазках для улучшения термостойкости, водостойкости, стабильности и механических свойств. Смазочные добавки можно использовать в подшипниках автомобилей, самолетов, кранов и т. Д.

Твердый кальцинированный гидроксид лития можно использовать в качестве поглотителя углекислого газа для членов экипажей космических кораблей и подводных лодок.

В космических аппаратах для проектов NASA Mercury, Geminni и Apollo в качестве абсорбентов использовался гидроксид лития. Он имеет надежную работу и легко поглощает диоксид углерода из водяного пара. Химическая реакция:

1 г безводного гидроксида лития может поглощать углекислый газ в объеме 450 мл. Только 750 г безводного гидроксида лития могут впитать углекислый газ, выдыхаемый одним человеком каждый день.

Гидроксид лития и другие соединения лития недавно использовались для разработки и исследования щелочных батарей (ENCYCLOPDIA BRITANNICA, 2013).

Ссылки

  1. КАМЕЯ. (2016). ГИДРОКСИД ЛИТИЯ, РАСТВОР. Восстановлено из химикатов.
  2. EMBL-EBI. (2008, 13 января). гидроксид лития. Восстановлено из ЧЭБИ.
  3. ENCYCLOPDIA BRITANNICA. (2013, 23 августа). Литий (Li). Восстановлено из британники.
  4. Гидроксид лития. (2016). Получено с сайта chemicalbook.com.
  5. Формула гидроксида лития. (С.Ф.). Получено с сайта softschools.com.
  6. Паспорт безопасности материала Гидроксид лития. (21 мая 2013 г.). Получено с сайта sciencelab.com.
  7. Национальный центр биотехнологической информации. (2017, 30 апреля). База данных PubChem Compound; CID = 3939. Получено из PubChem.
  8. Национальный институт охраны труда и здоровья. (2015, 22 июля). ГИДРОКСИД ЛИТИЯ. Восстановлено с cdc.gov.
  9. Королевское химическое общество. (2015). Гидроксид лития. Получено с сайта chemspider: chemspider.com.

3 различия между пандемией и эпидемией (и примеры)


источники:

http://www.syl.ru/article/379807/gidroksid-litiya-primeryi-himicheskih-reaktsii-a-takje-fizicheskie-svoystva-schelochi-i-ee-osobennosti

http://ru1.warbletoncouncil.org/hidroxido-de-litio-10444