Уравнение гиперболы в полярных координатах формула

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Уравнение эллипса, гиперболы, параболы в полярной системой координат.

Уравнение эллипса, гиперболы, параболы в полярной системе координат.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пример.

Пусть $\Gamma -$ эллипс, ветвь гиперболы или парабола, $F -$ фокус этой кривой, $D -$ соответствующая директриса. Вывести уравнение кривой $\Gamma$ в полярной системе координат, полюс которой совпадает с фокусом а полярная ось сонаправлена с осью кривой (см рисунок 1).

Решение.

Общее свойство эллипса, гиперболы и параболы состоит в следующем $$M\in\Gamma\Leftrightarrow\frac<\rho(M, F)><\rho(M, D)>=const=e,\qquad\qquad (1)$$ где $e -$ эксцентриситет кривой ( $e 1$ для гиперболы и $e=1$ для параболы)

Обозначим расстояние от фокусы до директрисы через $\frac

$( $p-$ параметр кривой, называемый полуфокальным параметром). Тогда из рисунка 1 следует, что $\rho(M, F)=r$ и $\rho(M, D)=\frac

+r\cos\varphi.$ Подставляя эти выражения в (1), получаем $$\frac<\frac

+r\cos\varphi>=e,$$ откуда $$r=\frac

<1-e\cos\varphi>.\qquad\qquad (2)$$ Уравнение (2) и есть искомое уравнение в полярной системе координат, общее для эллипса, гиперболы и параболы.

Примеры.

2.321(а).

Для эллипса $\frac<25>+\frac<16>=1$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится в левом фокусе.

Решение.

Найдем эксцентриситет параболы и параметр $p:$

Далее, подставляя найденные параметры в полярное уравнение (2), найденное в предыдущей задаче, найдем уравнение данного эллипса:

2.324(а).

Написать каноническое уравнение кривой второго порядка $r=\frac<9><5-4\cos\varphi>.$

Решение.

Приведем заданное уравнение, к уравнению вида $r=\frac

<1-e\cos\varphi>:$

Отсюда имеем: $e=\frac<4><5>,$ $p=\frac<9><5>.$ Поскольку $e

Далее, подставляя выражения эксцентриситета и параметра по определению, надем полуоси эллипса:

Таким образом, запишем каноническое уравнение эллипса:

Вывести полярное уравнение гиперболы $\frac-\frac=1,$ при условии, что полярная ось сонаправлена с осью $Ox,$ а полюс находится в центре гиперболы.

Решение.

Так как полюс находится в центре гиперболы, то $OM=r,$ тогда $\rho(M, D)=r\cos\varphi-\frac,$ $\rho(M, F)=\sqrt <(r\sin\varphi)^2+(c-r\cos\varphi)^2>.$

Таким образом, из уравнения (1) находим:

Домашнее задание.

2.321(б) Для эллипса $\frac<25>+\frac<16>=1$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится в правом фокусе.

2.322. Для правой ветви гиперболы $\frac<16>-\frac<9>=1$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится

а) в левом фокусе, б) в правом фокусе.

2.323. Для параболы $y^2=6x$ написать полярное уравнение, считая, что полярная ось сонаправлена с осью абсцисс, а полюс находится в фокусе параболы.

2.324 (б, в) Написать канонические уравнения следующих кривых второго порядка:

Ответ: а) $\frac<16>-\frac<9>=1,$ б) $y^2=6x.$

2.327. Вывести полярное уравнение параболы $y^2=2px$ при условии, что полярная ось сонаправленна с осью $Ox,$ а полюс находится в вершине параболы.

05.3. Уравнения эллипса, гиперболы и параболы

Уравнения эллипса, гиперболы и параболы
В полярной системе координат

Нам уже известно, что в полярной системе координат окружность с центром в начале отсчета задается уравнением:

,

Где r – радиус окружности, а – полярный радиус.

Интуитивно легко угадывается расположение начала отсчета, при котором уравнение окружности имеет более простой вид. Эта проблема усложняется при выводе уравнений эллипса, гиперболы и параболы.

Рассмотрим сначала отличный от окружности эллипс и параболу. Проведем рассуждения для параболы. Пусть начало полярной системы координат находится в полюсе F, а полярная ось перпендикулярна директрисе и ориентирована, как указано на рис. 5.18. Возьмем произвольную точку на данной кривой.

Рис. 5.18. Расположение полярной системы координат при выводе уравнений эллипса и параболы.

Как уже известно, для точек эллипса и параболы и только для них

Где – расстояние от этой точки до фокуса F, а – расстояние до директрисы, е – эксцентриситет.

Где р – расстояние от фокуса F до директрисы, то

Как параметр р выражается через полуоси эллиптической кривой?

Каким будет уравнение этих кривых, если начало полярной системы координат перенести в точку С, а полярную ось — параллельно самой себе, не меняя ориентации ?

(5.11)

Это есть уравнение эллипса или параболы в полярной системе координат.

Перейдем к выводу уравнения гиперболы в полярной системе координат.

Пусть F – один из фокусов гиперболы (рис.5.19), а р=AC, – эксцентриситет гиперболы. Располагаем начало отсчета в фокусе F и ориентируем полярную ось, как указано на рис. 5.19.

Рис. 5.19. Расположение полярной системы координат при выводе уравнения гиперболы.

Для правой ветви гиперболы, повторяя предыдущие рассуждения, сразу получим уравнение вида (5.11).

Найдем уравнение левой ветви. Для точек гиперболы будет справедливо соотношение . Пусть – произвольная точка, лежащая на левой ветви (рис. 5.19). Имеем:

Тогда уравнение левой ветви гиперболы примет вид:

.

Таким образом, полярное уравнение гиперболы имеет вид:

В каких пределах изменяется угол для обеих ветвей?

Что такое гипербола

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.


    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.


    источники:

    http://matica.org.ua/metodichki-i-knigi-po-matematike/osnovy-vysshei-matematiki/05-3-uravneniia-ellipsa-giperboly-i-paraboly

    http://skysmart.ru/articles/mathematic/chto-takoe-giperbola