Уравнение горения спирта на воздухе

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e25468d4f87169b • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Исследование пожароопасных свойств метилового спирта (стр. 2 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8

СН3ОН СО + 2Н2

Такие вещества имеют голубоватые пламена (пламя угарного газа СО, метанола СН3ОН и этанола С2Н5ОН).

При горении веществ, содержащих более 75 % углерода (ацетилен С2Н2, бензол С6Н6), в зоне горения образуется настолько много частиц С, что поступающего путем диффузии воздуха не хватает для полного окисления всего углерода.

С6Н6 6С + 3Н2

Не окислившийся в пламени углерод выделяется в виде копоти, и пламя при горении таких веществ будет ярким и коптящим.

Если кислород в веществе отсутствует или его содержание не превышает 30 %, но, в свою очередь, и массовая доля углерода не очень велика (менее 75 %), то при термическом разложении будет выделяться значительное количество частиц углерода, но при нормальном доступе воздуха в зону горения они успевают окислиться до СО2.

Возможная реакция при термическом разложении ацетона :

СН3СОСН3 СО + 2С + 3Н2.

В подобных случаях пламя будет яркое, но не коптящее.

Массовые доли углерода и кислорода в молекуле изобутилового спирта составляют:

? (С) = = 37.5%; ? (Н) = = 12.5%; ? (О) = = 50%;

Массовая доля углерода 30 %, следовательно, при горении метилового спирта пламя будет бесцветное или голубоватое.

2.2. Теоретический и практический расход воздуха на горение.

Расчет объема воздуха, необходимого для горения, предполагает вычисление:

а) теоретического объема воздуха Vвтеор и б) практического объема воздуха Vвпр, затраченного на горение (с учетом коэффициента избытка воздуха).

Стехиометрическое количество воздуха в уравнении реакции горения предполагает, что при данном соотношении компонентов, участвующих в реакции горения, воздух расходуется полностью. Объем воздуха в данном случае называется теоретическим (Vвтеор).

Горение может происходить не только при стехиометрическом соотношении компонентов, но и при значительном отклонении от него. Как правило, в условиях пожара на сгорание вещества воздуха затрачивается больше, чем определяется теоретическим расчетом. Избыточный воздух ?Vв в реакции горения не расходуется и удаляется из зоны реакции вместе с продуктами горения. Таким образом, практический объем воздуха равен:

Vвпр = Vвтеор + ?Vв

и, следовательно, избыток воздуха будет равен:

?Vв= Vвпр — Vвтеор

Обычно в расчетах избыток воздуха при горении учитывается с помощью коэффициента избытка воздуха (?). Коэффициент избытка воздуха показывает, во сколько раз в зону горения поступило воздуха больше, чем это теоретически необходимо для полного сгорания вещества:

Для горючих смесей стехиометрического состава (т. е. состава, соответствующего уравнению реакции горения) коэффициент избытка воздуха ? = 1, при этом реальный расход воздуха равен теоретическому. В этом случае обеспечивается оптимальный режим горения.

При ? > 1 горючую смесь называют бедной по горючему компоненту, а при ? СО2 + 2Н2О + 1.5·3,76·N2

По условию масса изобутилового спирта равна 1 кг., условия нормальные, тогда:

С4Н10О + 6 (О2 + 3,76·N2) > 4СО2 + 5Н2О + 6·3,76·N2

Vвтеор = 5 м3.

==3,2

Vвпр = Vвтеор ? ? =5*3.2 = 16 м3.

?Vв= Vвтеор(? ?1)=5·(3,2-1)=11 м3.

Процентный элемент состава изобутилового спирта:

? (С) = 37.5%; ? (Н) = 12,5%; ? (О) = 50%;

Найдем объем воздуха на горение по формуле для изобутилового спирта с известным процентным составом, тогда:

Vвтеор =

Vвпр = Vвтеор ? ? =5·3,2 = 16м3.

?Vв= Vвтеор(? ?1)=5·(3,2-1)=11м3.

Ответ: практический объем воздуха равен 16 м3, а теоретический

объем воздуха равен 5 м3 при коэффициенте избытка воздуха

2.3. Объём и состав продуктов полного сгорания.

Состав продуктов горения зависит от химической природы горючего материала и условий его горения. Практически всегда органические вещества горят с образованием продуктов полного и неполного горения.

К продуктам полного сгорания относятся: углекислый газ, образующийся при горении углерода, разложении карбонатов; водяной пар, образующийся при горении водорода и испарении влаги в исходном веществе; оксид серы (IV) SO2 и азот – продукты горения соединений, содержащих серу и азот.

Продукты неполного сгорания – это оксид углерода (II) – угарный газ СО, сажа С, продукты термоокислительного разложения – смолы.

Неорганические вещества сгорают, как правило, до соответствующих оксидов.

Выход продуктов горения количественно установить невозможно из-за чрезвычайной сложности их состава, поэтому материальный баланс процесса горения рассчитывается из предположения, что вещество сгорает полностью до конечных продуктов. При этом в состав продуктов горения включают также азот воздуха, израсходованного на горение, и избыток воздуха при ? > 1.

Как и в случае расчета объема воздуха, необходимого для горения, свои особенности имеет расчет продуктов горения для индивидуальных веществ, смеси газов и веществ с известным элементным составом.

СН4О + 1.5 (О2 + 3,76·N2) > СО2 + 2Н2О + 1.5·3,76·N2

М=74,12кг/кмоль Vm 2·Vm 1.5·3.76·Vm

VПГ = 6 м3.

Избыток воздуха определим по формуле (3.4):

?Vв= Vвтеор(? ?1)=8,63·(3,5-1)=21,6м3.

С учетом избытка воздуха практический объем продуктов горения составит:

VПГ* = VПГ + ?Vв = 6 + 11 = 17 м3.

По уравнению реакции определяем объем СО2, Н2О и N2.

V(СО2) = х2 = = 0.7 м3

V(Н2О) = х3 = = 1,4 м3

V(N2) = х4 = =3.95 м3

Объемная концентрация каждого компонента смеси рассчитывается следующим образом:

?об (СО2) = = = 4.1 %

?об (Н2О) = = = 8.2 %

?об (N2) = = =23.2 %

?об (О2) = = =50.8 %

?об (?Vв) = = = 64.7%

??об. = 100 % ± 1 %. 4.1+8.2+23.2+64.7 = 100 %,

Ответ: теоретический объем продуктов горения составил 6 м3,а практический объем продуктов горения — 17 м3. В процентном составе СО2- 4.1 %, Н2О — 8.2%, N2- 23.2%, ?Vв – 64.7%

2.4. Низшая теплота горения.

Энтальпией горения (?Нгор, кДж/моль) вещества называется тепловой эффект реакции окисления 1 моль горючего вещества с образованием высших оксидов.

Теплота горения (Qгор) численно равна энтальпии горения, но противоположна по знаку.

Пожарная характеристика спиртов, эфиров и ароматических углеводородов II

Этанол C2H5OH или CH3CH2OH, этиловый спирт – это органическое вещество, предельный одноатомный спирт.

Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp3-гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp3-гибридные орбитали, а еще две 2sp3-гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108о.

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этанол – жидкость с относительно высокой температурой кипения (температура кипения этанола +78оС).

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Этанол смешивается с водой в любых соотношениях.

Структурная изомерия

Для этанола характерна структурная изомерия – межклассовая изомерия.

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3
Этиловый спиртДиметиловый эфир
СН3–CH2–OHCH3–O–CH3

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этанола с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этанол взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Пожарная характеристика спиртов, эфиров и ароматических углеводородов II

Пожарная характеристика спиртов, эфиров и ароматических углеводородов II

Альдегид этилового спирта — ацетальдегид; ввиду повышенной пожарной опасности и низкой температуры кипения (+21°) на объектах хранится также в виде водного раствора с концентрацией не выше 70%.

В таком виде его опасность значительно снижается, и вспышка будет происходить только при высоких температурах.

Кроме альдегидов, из спиртов получают сложные и простые эфиры — ацетаты, формиаты, эфиры азотной кислоты, метиловый и диэтиловый эфиры и т. д.

Сложные эфиры представляют собой продукты, получаемые действием на спирты кислот. В этой реакции от молекулы спирта и кислоты отщепляется одна молекула воды

СН,СН,ОН + СН3СООН = СН3СООС2Н5 + Н20.

Как видно из реакции, радикал этилового спирта СНзСН2 или С2Н5 замещает в кислоте водород и образует молекулу эфира. А гидроксильная группа спирта, как и в случае образования аль­дегида, отщепляется и с водородом кислоты образует молекулу воды. Из формулы видно, что в молекулу эфира группа (ОМ) не входит.

Следовательно, пожарная опасность сложного эфира должна быть выше опасности спирта.

В этом можно убедиться, если сопоставить табличные данные их температур кипения, вспышки и пределов взрыва, например, аце­татов простых эфиров и соответственных им спиртов. Рас­смотрение таблицы убеждает нас, что хотя температура кипения сложных эфиров не намного ниже, чем у спиртов, все же темпера туры их вспышки значительно снижаются, но в то же время проме­жутки между пределами взрыва сдвигаются и будут меньше, чем у спиртов.

Сложные эфиры, или ацетаты, широко применяются как раство­рители и разбавители нитролаков и нитрокрасок; значительна; часть сложных эфиров под названием эссенции грушевой, ананасной и т. д. применяется в пищевой промышленности, так как ацетаты обладают приятным ароматическим запахом.

Но следует всегда помнить, что эти жидкости имеют весьма по­вышенную, по сравнению со спиртами, пожарную опасность. Как и спирты, все ацетаты токсичны, и длительное вдыхание паров аце­татов большой концентрации может привести к смерти.

Значительно более опасны простые эфиры, которые получаются отщеплением одной молекулы воды от двух молекул спирта с по­мощью серной кислоты в присутствии катализатора. Эту реакцию можно представить схемой

Г н’г и’ПН + H*so Читайте также: Как правильно пользоваться бытовым виномером-сахаромером, инструкция и таблица

наиболее широкое применение на объектах и в быту имеет эти­ловый эфир, поэтому остановимся кратко на его некоторых особен­ностях.

Этиловый эфир представляет собой бесцветную жидкость с силь­ным приятным запахом. Низкая температура кипения (+35°) об­условливает высокую испаряемость.

Пять кубических сантиметров эфира, налитые в чашечку диа­метром 8,5 см, испаряются в течение одной минуты. Скорость испа­рения этилового эфира принята за единицу и относительно ее уста­навливается скорость испарения всех остальных легковоспламеняю­щихся жидкостей. Низкая температура кипения обусловливает и чрезвычайно низкую по сравнению с другими жидкостями крити­ческую температуру.

Критическая температура эфира 193,3°; этой температуре соответствует давление пара, равное 35,5 ат (критическое давление). Следует отметить, что если нагреть этиловый спирт до темпера­туры 90°, то в закрытом сосуде давление пара будет равно 5 ат, следовательно, можно ожидать разрыва сосуда, а если нагреть сосуд с эфиром до 159°, давление пара в нем достигнет 20 ат.

Так как давление паров жидкостей при температуре выше их температур кипения всегда велико и это обстоятельство в условиях пожара связано с возможностью разрыва сосудов, растекания жид­костей и быстрого распространения пожара, приводим данные о днилепии паров некоторых жидкостей выше их температур кипе­нии .

Упругость пара некоторых жидкостей при температурах выше температур кипения

Наименование вещества и его формулаДавлениев атКритическая точка
12510204050^кр в °С»кр в ат
Температурав °С
Метиловый спирт
СН3ОН6584112,5138167,821424078,7
Этилопый спирт
C5HGOH7897126151183230243,563,1
Пропиловый
спирт С3Н7ОН97,8117149177210,8250263,749,9
Бутиловый спирт
С4Н„ОН117,5139,8172,5203237277287,148,4
Этиловый эфир
(С2Н6)20.34,65690122159183193,835,5
Бензол СвНв80103142178,8221,5272,3290,550,1
Толуол СсН5СН3110,6136,5178216,8262,5319320,644,6
Сероуглерод CS245,669,1104,8136,3175,524027372,9
Ацетон
СН3СОСН356,578,6113,0144,5181,0214,523547,0
Метилацетат
СНзСООСНз57,879,5113,1144,2181,022523346,3
Этилацетат
СН3СООСгНб77,1100,6136,6169 7209,523525037,9

Как видно из таблицы, во всех случаях пожара в хранилищах с легковоспламеняющимися жидкостями вопрос охлаждения резер­вуаров и сосудов с ними приобретает исключительно важное значе­ние; случаи взрыва сосудов с жидкостями практически являются не взрывами, а разрывами сосудов под влиянием огромного давления паров жидкости, которое в последующем, естественно, приводит к мгновенному воспламенению выделившихся паров или при неко­торых условиях — к взрыву.

Эфир легче воды, удельный вес его 0,73; в воде растворяется незначительно (13—15%).

Теплоемкость эфира незначительна — 0,529. Таким образом, для нагрева его до температур, опасных в смысле разрыва резервуара, требуется незначительное количество тепла.

При хранении на солнечном свету этиловый эфир разлагается с образованием перекисей, весьма чувствительных к внешним воз­действиям. Чтобы устранить эту опасность, в эфир добавляют стабилизаторы, в частности дифениламин. Эфир легко электризуется и дольше всех жидкостей удерживает на своей поверхности элек­трический заряд. Потенциал 3 ООО в падает до 300 в только через 35 минут, что больше» чем у бензина, примерно в 3 раза.

Имея в виду низкую температуру вспышки, большой промежуток между н. г. в. и в. г. в., а также низкую температуру самовоспламе­нения, можно сказать, что этиловый эфир является самой опасной жидкостью из всех спиртов и эфиров.

Эфир обычно хранят в помещениях 1-й или 2-й степени огнестой­кости, защищая от действия прямых солнечных лучей и нагревания.

Тарой для эфира служат металлические бочки емкостью 250 и 325 л, баллоны из двойного стекла емкостью 20 и 30 л и мелкая стеклянная посуда емкостью 3—5 и 10 л, с притертой пробкой

Этиловый эфир — наркотик и применяется в медицине. Широкое применение он находит в промышленности, а также как растворитель масел и жиров и т. д.

В лабораториях этиловый спирт часто применяется в смеси с прошловым или этиловым спиртом для приготовления из кино­пленки коллодия.

Температуры кипения и вспышки спиртов, простых и сложных эфиров и границы их взрыва

Наименование веществаФормулаТемпера­тура

Темпера­тура

Предел ы. г. в.взрыва в. г. в.
Метиловый спиртСН3ОН6503,636,5
МетмлацетатСНзСООСН57,8-134,114,0
Диметиловый эфир .СН30СН3—24—413,2819,0
Этиловый спиртС2Н5ОН7812
ЭтнлацетатСН3СООС2Н677—52,26П,4
Дл-лиловый эфирС2Н5ОС2Н635-20-401,748
Мршшлонмй спиртС3Н7ОН98242,58,7
ПропплацетатСН3СООС3Н7101,8141,96,3
бутиловый спиртС4Н9ОН117=-> 373,110,2
ЬутнлацстатСН3СООС4Н9127221,715,0
Лмилоный спиртС6НиОН137,8521, 9
АмилацетатСНзСООСбНц185252,210,0

Характеристика ароматических углеводородов

Гомологический ряд ароматических углеводородов можно рас­сматривать как производные представителя этого ряда — бензола, у которого один или несколько атомов водорода замещены одной пли несколькими группами СН3; NH2; ОН; N02 и т. д.

Как известно, строение бензола характеризуется большой сим­метричностью и представляется в виде замкнутого кольца

Таким образом, при образовании производных бензола во всех случаях в его молекуле замещаются только водороды, связанные | углеродом, углеродистый же скелет остается нетронутым.

Во всех случаях замещения в бензольном кольце водорода той или иной группой, исключая нитрогруппу (NO2), степень пожарной опасности данного производного резко снизится и пожарная опас­ность будет тем меньше, чем больше водородов будет замещено группами в бензольном кольце.

Но различные группы, заместившие водород, оказывают разное влияние на степень пожарной опасности производных бензола.

Замещение водорода на одну группу СНз изменяет температуру вспышки только на 22°, для хлорбензола это изменение определяется в 42°, для анилина в 86°. Замена же одного водорода на одну гидроксильную группу изменяет температуру ки­пения и вспышки почти на 100°. Аналогично изменяется темпера­тура кипения и вспышки других гидроксильных производных, на­пример, толуол С6Н5СН3 имеет температуру вспышки +7°, темпера­туру кипения 110°, а гидроксильное производное толуола, например, паракрезол СеШСНзОН имеет температуру кипения 203°, а темпера­туру вспышки 86°.

Как и для спиртов, увеличение на одну гидроксильную группу изменяет температуру кипения на 60—100° и столь же значительно температуру вспышки.

Если взять три производных бензола с одной, двумя и тремя гидроксильными группами, то изменение температур кипения и температур вспышки будет характеризоваться следующими цифрами.

Возьмем для примера бензол, фенол, пирокатехин и пирогаллол. Изобразим их структурные формулы и соответственно температуры кипения и вспышки.

Обращают на себя внимание тем­пературы кипения и вспышки пирогал­лола, весьма близкие к таким же тем­пературам глицерина—спирта с тремя гидроксильными группами. Темпера­тура кипения глицерина +290°, а тем­пература вспышки 160°.

Для характеристики большей части ароматических углеводородов приво­дим таблицу температур кипения и вспышки .

Представителем 1-й группы арома­тических является бензол, поэтому и рассмотрим его свойства. Удельный вес бензола меньше воды (0,8); при попадании в воду он будет плавать сверху. В воде бензол нерастворим; температура его плавления (застыва­ния) + 5,6°; поэтому хранить бензол в надземных хранилищах в зимних ус­ловиях нельзя, так как он замерзнет. Бензол нецелесообразно хранить в над­земных хранилищах еще и потому, что его температура кипения 80° С. Поэто­му он при повышенных температурах летом будет интенсивно испаряться.

Хранение в подземном хранилище сопряжено с необходимостью подогре­ва, что всегда нужно иметь в виду. Наиболее рациональна температура по­догрева от +25 до +30° С.

При обычных температурах рабо­чего помещения применение бензола всегда связано с возможностью обра­зования взрывчатых смесей.

Безопасной температурой для хра­нилища бензола, при которой исклю­чается возможность образования взрыв­чатых смесей, будет 22—26°.

Температура самовоспламенения бен­зола одна из самых высоких для легковоспламеняющихся жидкостей и колеб­лется в пределах 650—700° С, в зави­симости от степени чистоты продукта.

Теплотворная способность бензола 0560 ккал/кг, поэтому его горение со­провождается высокой температурой пламени, которую можно принять при трении на воздухе равной 1600°.

Для горения 1 кг бензола требуется 10,2 м* воздуха. Таким образом, при воспламенении в помещении малого объема и при отсутствии поступления воздуха длительного горения не будет.

Бензол является диэлектриком, поэтому при перекачке, сливе, наливе и транспортировке он легко электризуется. В то же время бензол легко отдает приобретенный заряд; напряжение 3000 в па­дает до 300 в за 30 секунд.

Однако, имея в виду повышенную способность бензола к элек­тризации, независимо от его способности к рассеиванию зарядов, необходимо заземление трубопроводов, аппаратуры и хранилищ с бензолом осуществлять на общих основаниях для электризую­щихся жидкостей.

К действиям температур бензол менее стоек, чем спирты, и легко расщепляется. Бензол токсичен; вдыхание концентрации выше 0,5 г/м3 в течение 5 минут смертельно.

Гомологами бензола являются толуол и ксилол, представляющие собой производные бензола.

Бензол имеет температуру вспышки —15°, толуол на 22° выше, т. е. +7°, а ксилол на 22° выше толуола, т. е. +29° (на каждую группу СНз температура вспышки изменяется на 22°).

В больших количествах бензол получают путем сухой перегонки каменных углей; в этом случае он оказывается загрязненным толуо­лом и ксилолом, очистка от которых может производиться вымора­живанием.

Кроме того, бензол получают и из ацетилена путем полимериза­ции, а также из нефти путем ее пиролиза.

Бензол, получаемый из ацетилена, является практически хими­чески чистым продуктом.

Бензол широко применяется как растворитель нитрокрасок и ни­тролаков, как моторное (моторный бензол) топливо в чистом виде и в виде добавок в бензины. В промышленности органического син­теза применяется для получения ряда производных (фенола, ани­лина, хлорбензола, нитробензола и т. д.), имеющих применение в анилокрасочной промышленности, промышленности взрывчатых веществ и т. д. На складах этот продукт хранится преимущественно в бочкотаре, в закрытых тарных хранилищах с центральным отопле­нием; при хранения в подземных хранилищах последние снаб­жаются системой подогрева (паропроводами).

Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Действие на организм человека

Степень токсичности веществ связана с их физической и химической природой. Взаимодействуя с организмом, продукты горения вызывают патологические синдромы.

Международная классификация болезней десятого пересмотра МКБ-10 определяет отравление продуктами горения кодом Т59 – «Токсическое действие других газов, дымов и паров».

По механизму действия на человека отравляющие компоненты в составе дыма делятся на пять групп.

Отравление угарным газом

Симптомы, первая помощь и профилактика

  1. Вещества, которые вызывают поражение кожного покрова и слизистой оболочки. Симптомы такого отравления продуктами горения – зуд, жжение кожи и её воспаление, боль в области глаз, век, слезотечение, кашель. Примеры – пары дёгтя, сернистый газ, формальдегид.
  2. Продукты горения, которые вызывают острые ингаляционные отравления. Пострадавшие жалуются на одышку, кашель. При осмотре обращает на себя внимание частое дыхание, синюшность. При высокой концентрации токсичного газа может произойти остановка дыхания. Так, признаки отравления продуктами горения ПВХ могут проявиться через несколько часов. Ингаляционные отравления вызывает хлор, аммиак, оксид азота.
  3. Продукты горения с образованием токсичных веществ, которых называют «ядами крови». Связывая гемоглобин, они нарушают доступ кислорода к тканям и запускают патологические реакции, охватывающие весь организм. Примеры – угарный газ, диоксид азота.
  4. Продукты горения, для которых органом-мишенью является нервная система. Это бензол, сероводород.
  5. Ферментные яды, которые воздействуют на тканевое дыхание, блокируя процессы активации кислорода. Это сероводород, синильная кислота.

Многие токсины, образующие в продуктах горения «универсальны», так как вызывают поражение сразу нескольких систем организма.

Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

В качестве катализатора этой реакции также используют оксид алюминия.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

Формулы для расчета объема

Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

Индивидуальное химическое соединение

В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле:

Vп.с. – объем влажных продуктов сгорания, м3/кг; – число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравнении реакции горения; М

– масса горючего вещества, численно равная молекулярной массе, кг.

Например, чтобы определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях, составляем уравнение реакции горения ацетона в воздухе:

CH3COCH3 + 4O2 + 4·3,76N2 = 3CO2 + 3H2O + 4·3,76N2

Определяем объем сухих продуктов сгорания ацетона:

Объем влажных продуктов сгорания 1 м3 горючего вещества (газа) можно рассчитать по формуле:

Vп.с. – объем влажных продуктов сгорания 1 м3горючего газа, м3/м3; – число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

Сложная смесь химических соединений

Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид:

С + О2+ 3,76N2 = СО2 + 3,76N2

При сгорании 1 кг углерода получается 22,4 / 12 = 1,86 м3 СО2 и 22,4 × 3,76/12 = 7,0 м3 N2.

Аналогично определяют объем (в м3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

СО2N2Н2ОSO2
Углерод1,867,00
Водород21,0011,2
Сера2,630,7

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.

Объем 1 кг азота равен 0,8 м3, а паров воды 1,24 м3. В воздухе при 0 °С и давлении 101325 Па на 1 кг кислорода приходится 3,76 × 22,4 / 32 = 2,63 м3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

Например, чтобы определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N, 2,5 % S, W = 3,8 %, A = 11,0 %.

Объем продуктов сгорания будет следующий, м3:

Состав продуктов сгоранияСО2Н2ОN2SO2
Углерод1,86 × 0,758 = 1,47 × 0,758 = 5,306
Водород11,2 × 0,038 = 0,42521 × 0,038 = 0,798
Сера2,63 × 0,025 = 0,6580,7 × 0,025 = 0,017
Азот в горючем веществе0,8 × 0,011 = 0,0088
Влага в горючем веществе1,24 × 0,03 = 0,037
Сумма1,40,4626,7708 – 0,0736 = 6,69720,017

Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м3. Итог указывает состав продуктов сгорания каменного угля: объем влажных продуктов сгорания 1 кг каменного угля равен:

Vп.с. = 1,4 + 0,462 + 6,6972 + 0,017 = 8,576 м3/кг.

Смесь газов

Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

СН4 + 2О2 + 2 × 3,76N2 = СО2 + 2Н2О + 7,52N2

Согласно этому уравнению, при сгорании 1 м3 метана получается 1 м3 диоксида углерода, 2 м3 паров воды и 7,52 м3 азота. Аналогично определяют объем (в м3) продуктов сгорания 1 м3 различных газов:

СО2Н2ОN2SO2
Водород1,01,88
Окись углерода1,01,88
Сероводород1,05,641,0
Метан1,02,07,52
Ацетилен2,01,09,54
Этилен2,02,011,28

На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14-16 % (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

СОСО2О2
В подвалах0,15-0,50,8-8,510,6-19
На чердаках0,1-0,60,3-4,016,0-20,2

По содержанию кислорода в продуктах сгорания на пожарах можно судить о коэффициенте избытка воздуха, при котором происходило горение.

Окисление этанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.
Первичный спирт → альдегид → карбоновая кислота

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

Например, этанол окисляется оксидом меди до уксусного альдегида

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания этанола:

C2H5OH + 3O2 = 2CO2 + 3H2O

Классификация

Большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным ознакомить вас со следующим термином:

Классификация опасности веществ по степени воздействия на организм – это установление (ранжирование) уровней опасности веществ по их поражающему и повреждающему воздействию на организм человека и (или) животного. Более подробно о данной классификации читайте в материале по ссылке >>

Также ознакомьтесь с познавательным материалом по теме:

Токсичность продуктов горения

Показатель токсичности продуктов горения

Характерные особенности и отличия спиртов

Этиловый и метиловый спирт отличаются не только своей химической формулой, но и рядом других характеристик. Алкоголь изготовленный на основе этилового спирта не несет разрушительных последствий, если потреблять его в разумных количествах, можно даже получить определенную пользу, чего не скажешь о действии метилового спирта. Его используют для суррогатов, так как он является намного дешевле пищевого варианта. Метиловый спирт еще называют техническим, его часто применяют для создания органических красителей и стекла.

Метиловыми спиртами можно отравиться, даже если их в кровь попало незначительное количество. Негативные изменения в самочувствии отмечаются после употребления 30 грамм метанола.

Как отличить метиловый спирт знают немногие, это в принципе не странно, ведь по цвету и запаху распознать их сложно, они идентичны, а формула на бутылке не отображается. Отличия можно уловить, если у вас хорошее обоняние. Метиловый спирт обладает менее насыщенным запахом, а этил усиливает любые запахи, соответственно открыв бутылку и уловив сильный аромат, можно предположить, что там этил. К большому сожалению, различить по запаху вещество, удается немногим, соответственно и сталкиваются люди со слепотой, рвотой и приступами удушья, употребив метил.

Несложные способы отличить этил и метил

Самым простым способом, как определить метиловый спирт в алкоголе есть погружение в жидкость обчищенного картофеля. Если за пол часа картофель приобретет розовый оттенок, вполне вероятно он контактировал с метанолом. В случае, если изменение цвета не произойдет или картофель станет синим, алкоголь содержит определенный процент этила.

Отличить метиловый спирт от этилового можно с помощью марганцовки. Спирт в домашних условиях наливают в емкость, что можно нагревать. Добавляют немного марганцовки и нагревают до 18 градусов. Далее необходимо засекать время изменения цвета жидкости. Она может окраситься цветом от фиолетового до желто-розового. Проба считается пройденной, и в емкости алкоголь с этанолом, если обесцвечивание выявили не раньше, чем за 10 минут.

Среди других, не менее простых способов, как отличить метанол от этанола можно отметить такие эксперименты:

  1. Отличие между этиловыми вариантами алкоголя и спирте метаноле можно увидеть, если нагреть жидкость. Технические спирты температуру кипения имеют ниже. То есть в метиловом варианте можно обнаружить кипение при 64 градусах, а этиловому спирту нужна большая температура, примерно 78 градусов.
  2. Оговаривая чем отличается этиловый спирт от метилового, нельзя забыть и о школьном эксперименте с химии. В холодную жидкость погружают нагретую медную проволоку. Если в процессе реакции меди, ощущается запах прелых яблок или определяем запах уксуса, то проволока контактировала с этиловым спиртом. Разницу ощущают практически сразу, когда опускают тот же медный провод в емкость с алкоголем на основе метила. Будет ощущаться едкий запах формалина.
  3. Как определить этиловый спирт знают повара, они добавляют в жидкость немного пищевой соды, если на дне появляется нерастворимый густой желтый осадок, то сода была опущена в этил. Опустив соду в метиленовую жидкость, осадок будет белым или прозрачным.
  4. Отличать метил можно с помощью марганцовки, если добавить ее небольшое количество в процессе кипения жидкости, разница будет в том, что этил не образует пузырьков, а вот метил образует.

Какой из вышеуказанных способов определения спиртов, вы бы не выбрали, помните, что они не дают 100% гарантии. С точностью различать каким веществом переполнен ваш напиток, могут сотрудники лаборатории, путем проведения химических реакций.

Если вы хотите сохранить свое здоровье на протяжении длительного времени, лучше вовсе отказаться от употребления горячительных напитков, и не искать отличий между «плохим» и «еще хуже». Между горячительным нет большой разницы, этил убивает человека медленно, разрушая внутренние органы, а метил отличим тем, что убивает мгновенно. И в первом, и во втором спиртовом напитке — ждет смерть, помните это, и ведите здоровый образ жизни.


источники:

http://pandia.ru/text/82/064/25762-2.php

http://hwim.ru/vina/gorenie-etanola.html