Уравнение и схема замещения трансформатора без сердечника

Уравнение и схема замещения трансформатора без сердечника

Трансформатор, вообще, представляет собой аппарат, предназначенный для преобразования посредством магнитного поля электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при условии сохранения неизменной частоты. Они строятся на базе индуктивно-связанных катушек, надетых на общий сердечник (рис.8.1). У воздушного трансформатора сердечник неферромагнитный.

Обмотка трансформатора, подключенная к источнику с напряжением u 1 , называется первичной обмоткой, а обмотка, к которой подключается нагрузка Z н , называется вторичной обмоткой. Число витков первичной обмотки обозначим через w 1 , а число витков вторичной обмотки — через w 2 .

При подключении первичной обмотки к источнику в последней появляется ток , создающий магнитный поток Ф 11 . Часть этого потока Ф м1 , называемая потоком взаимоиндукции первичной обмотки, пронизывает витки вторичной обмотки и обуславливает появление ЭДС в витках вторичной обмотки. Под действием этой ЭДС в цепи нагрузки появляется ток , создающий поток вторичной обмотки Ф 22 . Часть потока, создаваемого током — Ф м2 , пронизывает витки первичной обмотки, замыкаясь встречно потоку Ф м1 первичной обмотки /в соответствии с принципом Ленца/, обуславливающим ЭДС и ток . Таким образом, первичную и вторичную обмотки трансформатора можно рассматривать как две индуктивно-связанные и встречно включенные катушки.

Основные уравнения и векторная диаграмма воздушного трансформатора

Поскольку первичная и вторичная обмотки трансформатора с параметрами соответственно R 1 ,L 1 и R 2 ,L 2 представляют собой 2 индуктивно связанные и встречно включенные катушки, уравнения Кирхгофа, составленные для цепей первичной и вторичной обмоток можно записать в следующем виде

,

где u R1 , u R1 — напряжения на активных сопротивлениях первичной и вторичной обмоток трансформатора, u L1 , u L2 — напряжения на индуктивностях первичной и вторичной обмоток, u м12 — напряжение взаимоиндукции в первичной обмотке, обусловленное током вторичной обмотки, u м21 — напряжение взаимоиндукции во вторичной обмотке, обусловленное током первичной обмотки, u 2 — напряжение на нагрузке.

Поскольку ток во вторичной обмотке обусловлен напряжением взаимоиндукции u м21 , то это слагаемое во втором уравнении целесообразно перенести в левую часть и записать систему в виде

. (8.1)

Если напряжение на первичной обмотке трансформатора синусои-дально, то систему (8.1) можно записать в комплексной форме

(8.2)

Графической интерпретацией системы (8.2) является векторная диаг-рамма воздушного трансформатора, представленная на рис. 8.2.

При построении диаграммы считаются заданными векторы тока и напряжения на нагрузке , . Данная диаграмма соответствует активно-индуктивной нагрузке. Диаграмма строится в следующем порядке:

(r) (r) (r) (r) (r) (r) (r) (r) (r) (r)

Входное сопротивление трансформатора.

Вводя понятия комплексного сопротивления первичной обмотки

Z 1 =R 1 +j w L 1 , комплексного сопротивления вторичной обмотки Z 2 =R 2 +j w L 2 и комплексного сопротивления нагрузки Z н , систему (8.2) запишем в виде

(8.3)

Находя из второго уравнения системы (8.3) ток

и подставляя его в первое уравнение системы, получим

.

Из последнего выражения найдем входное сопротивление трансформатора в виде

= Z 1 + Z вн .

Следовательно, входное сопротивление трансформатора можно представить суммой 2 составляющих : комплексного сопротивления соб-ственно первичной обмотки трансформатора Z 1 и комплексного сопро-тивления Z вн , вносимого из вторичной цепи трансформатора в первичную. Именно изменением этой составляющей можно объяснить изменение тока первичной обмотки трансформатора с изменением его нагрузки.

Уравнения электрического состояния воздушного трансформатора.

В силу того , что поток Ф 11 , создаваемый током первичной обмотки трансформатора имеет 2 составляющие, т.е. Ф 11 = Ф s 1 +Ф м1 , индуктивность первичной обмотки также можно представить в виде суммы двух составляющих L 1 = L s 1 +L м1 первая из которых обусловлена потоком рассеяния первичной обмотки и называется индуктивностью рассеяния первичной обмотки L s 1 , а вторая L м1 обусловлена потоком взаимоиндукции первичной обмотки — Ф м1 и определяется выражением

L м1 = Ф м1 w 1 / i 1 = ( i 1 w 1 l м )w 1 w 2 /( i 1 w 2 )= (w 1 / w 2 )M.

Рассуждая аналогично, индуктивность вторичной обмотки также можно представить в виде суммы двух составляющих L 2 = L s 2 +L м2 , где

L м2 = Ф м2 w 2 / i 2 = ( i 2 w 2 l м )w 2 w 1 /( i 2 w 1 )= (w 2 / w 1 )M.

С учетом сказанного систему уравнений (8.2) можно привести к следующему виду

. (8.4)

Введем понятие результирующего потока взаимоиндукции /или рабочего потока/ трансформатора. Это результирующий поток, пронизывающий как первичную, так и вторичную обмотки трансформатора. Мгновенное значение этого потока равно

Ф м = Ф м1 — Ф м2 = ( i 1 w 1 l м )- ( i 2 w 2 l м )= i 1 M/w 2 — i 2 M/w 1 ,

Следовательно, ЭДС e 1 и e 2 , наводимые рабочим потоком транс-форматора в витках первичной и вторичной обмоток можно представить в виде

,

,

или в комплексной форме

,

.

Тогда систему уравнений электрического состояния трансформатора (8.4) можно переписать в виде

, (8.5)

Поскольку рабочий поток трансформатора синусоидален

,

то мгновенные значения ЭДС могут быть определены как

,

.

Таким образом, ЭДС e 1 и e 2 имеют одинаковую начальную фазу и отстают от рабочего потока на 90 эл. градусов. Действующие значения ЭДС соответственно равны

,

,

где — частота питающей сети Ф m — амплитуда рабочего потока трансформатора.

Отношение ЭДС, наводимых рабочим потоком в витках первичной и вторичной обмоток трансформатора, называется коэффициентом трансфор-мации

.

Схема замещения трансформатора и приведение его параметров

При расчете цепей с трансформатором широко используются схемы замещения, при переходе к которым действительные трансформаторные связи /электромагнитные/ заменяются электрическими связями. Эти схемы удобны для аналитического исследования установившегося и переходных режимов в трансформаторе. Схемы составляются таким образом, чтобы их токи и напряжения описывались теми же уравнениями, что и в реальном трансформаторе.

Для обоснования схемы рассмотрим трансформатор с числом витков первичной обмотки равным числу витков вторичной обмотки , то есть . Для такого трансформатора система (8.4) может быть записана в виде

Нетрудно видеть, что в этом случае . Такая система представляет собой систему уравнений Кирхгофа для электрической цепи, приведенной на рис.8.3, которую можно считать схемой замещения трансформатора для случая, если w 1 =w 2 .

Если число витков первичной и вторичной обмоток различно, то осуществляют приведение параметров трансформатора.

Приведением параметров трансформатора называется операция условной замены действительной вторичной обмотки с числом витков фиктивной вторичной обмоткой с числом витков

таким образом, чтобы физические процессы в приведенном трансформаторе оставались такими же, как и в реальном.

В силу того, что w 2 ‘=w 1 , то , где — ЭДС вторичной обмотки реального трансформатора.

Намагничивающие силы вторичной обмотки реального и приведенного трансформатора должны быть одинаковы, то есть i 2 w 2 = i ‘ 2 w’ 2 .

Следовательно, i ‘ 2 = i 2 w 2 /w’ 2 == i 2 /k, где i ‘ 2 — приведенный ток вторичной обмотки трансформатора.

Полные электромагнитные мощности в нагрузке реального и приве-денного трансформатора должны быть одинаковы, то есть U 2 I 2 = U 2 ‘I 2 ‘ Следовательно, U 2 ‘= U 2 I 2 /I 2 ‘= U 2 k, где U 2 ‘ — приведенное напряжение на нагрузке.

На основе равенства электрических потерь мощности во вторичных обмотках реального и приведенного трансформатора I 2 2 R 2 = I 2 ‘ 2 R 2 ‘, находим

R 2 ‘=(I 2 2 /I 2 ‘ 2 )R 2 =k 2 R 2 , где R 2 ‘ — приведенное активное сопротивление вторичной обмотки.

На основе равенства реактивных мощностей в инуктивностях рассеяния реального и приведенного трансформатора I 2 2 X 2 s = I 2 ‘ 2 X 2 s ‘ нахо-дим X 2 s ‘ =(I 2 2 /I 2 ‘ 2 ) X 2 s = k 2 X 2 s или w L 2 s ‘ =(I 2 2 /I 2 ‘ 2 ) w L 2 s = k 2 w L 2 s , где L 2 s ‘ — приведенная индуктивность рассеяния вторичной обмотки трансформатора.

Приведение параметров нагрузки осуществляется аналогично, т.е.

R н ‘ = R н k 2 , L н ‘ = L н k 2 , C н ‘ = C н /k2.

На схеме (рис.8.3) в скобках приведены условные обозначения элементов приведенного трансформатора.

Под идеальным или идеализированным трансформатором понимают трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток. Поскольку для такого трансформатора R 1 =R 2 =0 и L s 1 = L s 2 =0, то схема замещения его имеет вид, представленный на рис. 8.4. Входное сопротивление трансформатора определяется по формуле

.

При w M>> Zн Z вх =Z’ н =к 2 Z н .

Следовательно, идеальный трансформатор, включенный между нагрузкой и источником электроэнергии изменяет сопротивление нагрузки пропорционально квадрату коэффициента трансформации без изменения угла. Это свойство практически используется в различных областях техники /электротехники, проводной связи, радио и т.п./ для согласования сопротивлений нагрузки и источника.

№35 Трансформатор без стального сердечника.

Простейший трансформатор представляет собой совокупность двух обмоток, размещенных на общем магнитопроводе (рис. 35.1, а).

Рис. 35.1 — Трансформатор и его схема замещения

К его первичной обмотке подводится напряжение источника питания, а ко вторичной – подключается нагрузка. Одноименными зажимами обмоток являются их верхние выводы. Ток первичной обмотки I1 создает в магнитопроводе магнитный поток Ф1, который в свою очередь во вторичной обмотке вызывает появление тока I2. Создаваемый им магнитный поток Ф2 в соответствии с принципом Ленца препятствует потоку Ф1, т.е. направлен ему навстречу. Направление тока I2, соответствующее показанному на схеме потоку Ф2, определяем по правилу правой руки.

Мы будем рассматривать трансформатор, не имеющий ферромагнитного сердечника. Такие трансформаторы применяются при высоких частотах и в специальных электроизмерительных устройствах. Катушки с ферромагнитными сердечниками имеют нелинейные характеристики и здесь не рассматриваются.

Электрическая схема замещения трансформатора изображена на рис. 35.1, б. На схеме указаны: R1, X1, R2, X2 и – сопротивления первичной и вторичной обмоток трансформатора, RН и XH – сопротивления нагрузки. Введем обозначения: R22=R2+RH и X22=X2+XH – суммарные активное и реактивное сопротивления вторичной цепи трансформатора, Z1=R1+jX1, Z2=R2+jX2, ZH=RH+jXH, Z22=R22+jX22 – комплексные сопротивления соответствующих участков.

Запишем уравнения второго закона Кирхгофа для первичной и вторичной цепей трансформатора, учитывая, что его обмотки имеют встречное включение:

Обозначив I1jXM=E2M, второе уравнение системы (35.1) можно записать так:

Физически E2M – это ЭДС, которая наводится во вторичной обмотке переменным магнитным полем первичной обмотки. С учетом этого уравнение можно прочитать так: ЭДС, наведенная во вторичной обмотке трансформатора, равна сумме падений напряжений на всех элементах его вторичного контура. Подставляя I2ZH=U2 , получим: U2=E2M-I2Z2 . Смысл последнего уравнения заключается в следующем: напряжение на вторичных зажимах трансформатора меньше эдс, наведенной во вторичной обмотке, на величину падения напряжения на ее сопротивлении.

На рис. 35.2 изображена векторная диаграмма трансформатора. Ее построение начинаем со вторичного тока I2. Ориентируясь на его направление, проводим векторы напряжений на всех элементах вторичной цепи. Их сумма равна ЭДС E2M. Так как в формуле, определяющей ее величину, присутствует множитель j, поворачивающий вектор на четверть оборота, то ток проводим под углом 90° к E2M в сторону отставания. Определив направление I1, строим векторы I1R1 и I1jX1 , которые в сумме с I2jXM – дают U1.

Рис. 35.2 — Векторная диаграмма трансформатора

Для анализа работы трансформатора применяют различные эквивалентные схемы. Рассмотрим некоторые из них.

Соединив между собой два нижних зажима трансформатора (режим его работы при этом не изменится) и произведя развязку индуктивных связей, придём к Т-образной эквивалентной схеме (рис. 35.3).

Рис. 35.3 — Получение двухконтурной (Т-образной) эквивалентной схемы

Из второго уравнения системы выразим ток I2 и подставим в первое уравнение той же системы:

Последнему выражению соответствует схема, изображенная на рис. 35.3. Соединенное последовательно с Z1 сопротивление ZBH называется вносимым (из вторичной цепи трансформатора в первичную).

Как следует из формулы, оно равно:

Его активная и реактивная составляющие соответственно равны:

Появление в первичном контуре активного сопротивления, вносимого из первичного контура, физически означает следующее. Энергия, подводимая к трансформатору, потребляется не только сопротивлением R1, но и сопротивлениями вторичной цепи R2 и RH, куда она передается через переменное магнитное поле между обмотками.

Из-за минуса в формуле вносимого реактивного сопротивления общее реактивное сопротивление всей цепи, равное сумме X1 и XBH, оказывается меньше индуктивного сопротивления первичной обмотки.

Это хорошо согласуется со сказанным ранее. При встречном соединении обмоток трансформатора поток Ф2, направленный противоположно потоку Ф1, уменьшает последний, что приводит к уменьшению общего индуктивного сопротивления.

Режимы работы и схема замещения трансформатора

Схема замещения трансформатора позволяет отдельно расчитывать цепи первичной и вторичных обмоток. В схему замещения трансформатора входят поля рассеивания магнитного потока, а вторичные цепи пересчитываются в первичную через коэффициенты трансформации.

Для составления схемы замещения возьмём трансформатор с двумя обмотками: первичной с количеством витков W1 для подключения к сети питания и вторичной с количеством витков W2 для подключения нагрузки. Его упрощенное устройство показано на рисунке 1.


Рисунок 1 Упрощенное устройство трансформатора

Принципиальная схема подключения нагрузки к источнику питания через трансформатор приведена на рисунке 2.


Рисунок 2 Принципиальная схема подключения нагрузки через трансформатор

Для создания схемы замещения трансформатора нам потребуются три режима его работы: режим холостого хода (ХХ), рабочий режим (номинальный режим) и режим короткого замыкания (КЗ). Режимы холостого хода и короткого замыкания трансформатора позволяют определить значения элементов схемы замещения трасформатора. Рассмотрим работу трансформатора в этих режимах.

Режим холостого хода трансформатора (ХХ)

В этом режиме сопротивление нагрузки равно бесконечности, в результате чего можно не учитывать вторичную обмотку и трансформатор работает как обычная катушка индуктивности с ферромагнитным сердечником. Кроме того, в режиме холостого хода трансформатора определяют его коэффициент трансформации. Схема замещения трасформатора в режиме холостого хода приведена на рисунке 3.


Рисунок 3 Схемы замещения трансформатора для режима холостого хода:
а — последовательная схема замещения,
б — параллельная схема замещения

На эквивалентных схемах трансформатора, приведенных на рисунке 2, показаны:

Индуктивность первичной обмотки, которая вместе с потерями в сердечнике влияет на к.п.д. трансформатора, можно рассчитать по следующей формуле:

(1)

Параллельная эквивалентная схема трансформатора более удобна по сравнению с последовательной для построения векторной диаграммы напряжений и токов для реальной катушки индуктивности. Эта диаграмма приведена на рисунке 3.


Рисунок 3 Векторная диаграмма напряжений и токов трансформатора в режиме холостого хода

Здесь δ — угол потерь в магнитопроводе
X1 — сопротивление индуктивности рассеяния LS1.

Обратите внимание, что в этом режиме работы трансформатора вектор ЭДС индуцированный в обмотке W2 (напряжение во вторичной обмотке) совпадает по фазе с eL, а напряжение U1, подаваемое на первичную обмотку трансформатора, является суммой э.д.с. на индуктивности первичной обмотки и падения напряжения на сопротивлениях индуктивности рассеивания и активного сопротивления первичной обмотки:

; (2)

Это выражение можно записать немного иначе:

При правильном проектировании трансформатора потери на омическом сопротивлении первичной обмотки малы, поскольку ток холостого хода много меньше номинального. Тогда угол сдвига фаз между током и напряжением (I10 и U1) определяется потерями в магнитопроводе. Это позволяет из опыта холостого хода и найти угол потерь δ и рассчитать потери в сердечнике.

Трансформатор является обращаемым устройством (первичную и вторичную обмотки можно поменять местами!), поэтому для каждой из обмоток записываем основную формулу трансформаторной ЭДС.

(3)
(4)

Разделив уравнение (3) на (4), получим выражение для коэффициента трансформации:

(5)

Подведем итоги Режим работы трансформатора на холостом ходе позволяет определить:

Коэффициент трансформации

Ток холостого хода I10 (для определения к.п.д.)

Режим короткого замыкания (КЗ)

Этот режим в условиях эксплуатации является аварийным. Он применяется только для экспериментального определения индуктивности рассеивания трансформатора. Измерения проводят в следующей последовательности. Входное напряжение устанавливают равным нулю. Замыкают выходные клеммы (). Плавно поднимают входное напряжение (U1) до тех пор, пока в обмотках не установятся номинальные токи. Величина называется напряжением короткого замыкания, является паспортной величиной трансформатора и обычно составляет 5. 10% от номинального напряжения U1ном. При этом, ток холостого хода I10 весьма мал по сравнению с номинальным и им можно пренебречь (считать равным нулю). Тогда эквивалентная схема трансформатора в режиме КЗ принимает вид, показанный на рисунке 5.


Рисунок 5 Эквивалентная схема трансформатора в режиме короткого замыкания

Ток холостого хода мы приняли равным нулю , поэтому в эквивалентной схеме трансформатора параллельная цепь L0r0 отсутствует. Входное сопротивление трансформатора полностью определяются индуктивностью рассеивания первичной и вторичной обмоток, а также их омическим сопротивлением:

(14)

Результирующее сопротивление — это сопротивление короткого замыкания трансформатора. Зная полное сопротивление короткого замыкания:

можно найти коэффициент передачи трансформатора, а в случае малой индуктивности рассеивания потери мощности в обмотках трансформатора.

Намагничивающая сила, создающая магнитный поток в сердечнике в режиме короткого замыкания (измерительный режим) практически равна нулю:

и если I10 = 0, то откуда находим отношение токов, а значит и коэффициент трансформации по току:

(15)

Знак минус в формуле (15) говорит о том, что магнитные потоки Ф1 и Ф2 направлены навстречу друг другу и взаимно компенсируются.

Рабочий режим (нагруженный или номинальный). Если к вторичной обмотке W2 подключить нагрузку Rн, то ее напряжение U2 вызовет ток нагрузки I2, как это показано на рисунке 1б. Токи I1 и I2 ориентированы различно относительно магнитного потока Ф0. Ток I1 создает поток Ф1, а ток I2 создаёт поток Ф2 и стремится уменьшить поток Ф1. Иначе говоря, в магнитопроводе появляются магнитные потоки Ф1 и Ф2, которые на основании закона Ленца направлены встречно и их алгебраическая сумма даёт: — магнитный поток холостого хода трансформатора.

Отсюда можно записать уравнение намагничивающих сил (закон полного тока):

(6)

Видно, что изменение тока I2 обязательно приведёт к изменению тока I1. Нагрузка образует второй контур, в котором ЭДС вторичной обмотки е2 является источником энергии. При этом, справедливы уравнения:

(7)
(8)

где r2 — омическое сопротивление вторичной обмотки
х2 — сопротивление индуктивности рассеяния вторичной обмотки.

По закону Киргофа сумма токов (6) может быть обеспечена параллельным соединением электрических цепей, поэтому в рабочем режиме трансформатор можно представить эквивалентной схемой, приведенной на рисунке 4.


Рисунок 4 Схема замещения трансформатора в рабочем режиме

Эквивалентная схема трансформатора в рабочем режиме, приведенная на рисунке 4 называется Т-образной схемой замещения или приведённым трансформатором. Приведение вторичной обмотки к первичной выполняется при условии равенства полных мощностей вторичных обмоток , или . Из этого равенства можно получить формулы пересчета в первичную обмотку напряжений и токов вторичной обмотки и из них получить приведенные значения сопротивлений нагрузки, вторичной обмотки и индуктивности рассеивания.

(9)
(10)

(11)

(12)

(13)

Токи и напряжения приводятся через коэффициент трансформации, а сопротивления — через квадрат коэффициента трансформации. Можно пересчитать вторичную цепь в первичную или наоборот.

Представление трансформатора в виде эквивалентной схемы позволяет методами теории цепей рассчитать любую, сколь угодно сложную схему с трансформаторами.

Если у трансформатора есть несколько вторичных обмоток, как показано на условно-графическом изображении трансформатора, приведенном на рисунке 6а, то пересчитанные сопротивления нагрузки на эквивалентной схеме соединяются параллельно и его эквивалентная схема принимает вид, показанный на рисунке 6б.


Рисунок 6 Схема замещения трансформатора с двумя вторичными обмотками

При этом значение импеданса (полного сопротивления) вторичных обмоток Z2 находится как сумма сопротивлений вторичных обмоток и сопротивления их индуктивностей рассеивания:

Понравился материал? Поделись с друзьями!

  1. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  2. Схема замещения трансформатора
  3. Режимы работы трансформатора
  4. Параметры схемы замещения трансформатора

Вместе со статьей «Режимы работы и схема замещения трансформатора» читают:


источники:

http://toehelp.com.ua/lectures/035.html

http://digteh.ru/BP/SxZamTransf/