Уравнение идеального газа вант гоффа

Коллигативные свойства растворов

Любому раствору характерны те или иные физические свойства, к которым относятся и коллигативные свойства растворов. Это такие свойства, на которые не оказывает влияние природа растворенного вещества, а зависят они исключительно от количества частиц этого растворенного вещества.

К коллигативным свойствам растворов относятся:

  • Понижение давление паров
  • Повышение температуры кипения
  • Понижение температуры затвердевания (кристаллизации)
  • Осмотическое давление раствора.

Рассмотрим подробнее каждое из перечисленных свойств.

Понижение давления паров

Давление насыщенного пара (т.е. пара, который пребывает в состоянии равновесия с жидкостью) над чистым растворителем называется давлением или упругостью насыщенного пара чистого растворителя.

Если в некотором растворителе растворить нелетучее вещество, то равновесное давление паров растворителя при этом понижается, т.к. присутствие какого – либо вещества, растворенного в этом растворителе, затрудняет переход частиц растворителя в паровую фазу.

Экспериментально доказано, что такое понижение давления паров напрямую зависит от количества растворенного вещества. В 1887 г. Ф.М. Рауль описал количественные закономерности коллигативных свойств растворов.

Первый закон Рауля

Первый закон Рауля заключается в следующем:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p — давление пара над раствором, Па;

p0 — давление пара над чистым растворителем, Па;

χр-ль — мольная доля растворителя.

nв-ва и nр-ля соответственно количество растворенного вещества и растворителя, моль.

Иногда Первому закону Рауля дают другую формулировку:

относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества:

При этом принимаем, что χв-ва + χр-ль= 1

Изотонический коэффициент Вант-Гоффа

Для растворов электролитов данное уравнение приобретает несколько иной вид, в его состав входит изотонический коэффициент i:

Δp — изменение давления паров раствора по сравнению с чистым растворителем;

i – изотонический коэффициент.

Изотонический коэффициент (или фактор Вант-Гоффа) — это параметр, не имеющий размерности, который характеризует поведение какого – либо вещества в растворе.

То есть, изотонический коэффициент показывает, разницу содержания частиц в растворе электролита по сравнению с раствором неэлектролита такой же концентрации. Он тесно связан связан с процессом диссоциации, точнее, со степенью диссоциации и выражается следующим выражением:

n – количество ионов, на которые диссоциирует вещество.

α – степень диссоциации.

Повышение температуры кипения или понижение температуры затвердевания (кристаллизации). Второй закон Рауля

Равновесное давление паров жидкости имеет тенденцию к увеличению с ростом температуры, жидкость начинает кипеть, при уравнивании давления ее паров и внешнего давления.

При наличии нелетучего вещества, давление паров раствора снижается, и раствор будет закипать при более высокой температуре, по сравнению с температурой кипения чистого растворителя.

Температура замерзания жидкости также определяется той температурой, при которой давления паров жидкой и твердой фаз уравниваются.

Ф.М. Рауль доказал, что повышение температуры кипения, так же как и понижение температуры замерзания разбавленных растворов нелетучих веществ, прямо пропорционально моляльной концентрации раствора и не зависит от природы растворённого вещества. Это правило известно как Второй закон Рауля:

K — криоскопическая константа,

mв-ва — моляльность вещества в растворе.

Растворы электролитов не подчиняются Законам Рауля. Но для учёта всех несоответствий Вант-Гофф предложил ввести в приведённые уравнения поправку в виде изотонического коэффициента i, учитывающего процесс распада на ионы молекул растворённого вещества:

Осмотическое давление раствора

Некоторые материалы имеют способность к полупроницаемости, т.е. им свойственно пропускать частицы определенного вида и не пропускать частицы другого вида.

Перемещение молекул растворителя (но не растворенного, в нем вещества), через полупроницаемую мембрану в раствор с большей концентрацией из более разбавленного представляет собой такое явление как осмос.

Представим два таких раствора, которые разделены полупроницаемой мембраной, как показано на рисунке выше. Растворы стремятся к выравниванию концентраций, поэтому вода будет проникать в раствор, тем самым уменьшая его концентрацию.

Для того, чтобы осмос приостановить, необходимо приложить внешнее давление к раствору. Такое давление, которое требуется приложить, называется осмотическим давлением.

Осмотическое давление и концентрацию раствора неэлектролита позволяет связать уравнение Вант — Гоффа, которое напоминает уравнение идеального газа Клапейрона – Менделеева:

где C — молярная концентрация раствора, моль/м 3 ,

R — универсальная газовая постоянная (8,314 Дж/моль·К);

T — абсолютная температура раствора.

Преобразуем уравнение следующим образом:

C = n/V = m/(M·V)

π = т·R·T / M·V или

Для растворов электролитов осмотическое давление определяется уравнением, в которое входит изотонический коэффициент:

где i — изотонический коэффициент раствора.

Для растворов электролитов i > 1, а для растворов неэлектролитов i = 1.

Если полупроницаемой перегородкой разделены два раствора, имеющие одинаковое осмотическое давление, то перемещение растворителя через перегородку отсутствует. Такие растворы называются изотоническими.

Раствор, с меньшим осмотическим давлением, по сравнению с более концентрированным раствором, называют гипотоническим, а раствор с большей концентрацией – гипертоническим.

ИЗОТЕРМА ВАНТ — ГОФФА, ВЫВОД И АНАЛИЗ

Константа равновесия определяют условия равновесия, когда концентрация (парциальные давления) является равновесными. В каком направлении пойдёт химическая реакция, если парциальное давление исходных веществ и продуктов реакции отличаются от равновесных? Ответить на этот вопрос поможет уравнение изотермы химической реакции.

Рассмотрим уравнение реакции: aA + bB ↔ cC + dD

Для изобарно-изотермического процесса изменение Гиббса равно:

P’- неравновесное, парциальное давление компонентов.

где =

— по форме записи напоминает константу равновесия, но отличается тем, что вместо равновесных давлений в него входят величины давления в данный момент времени.

( ) — это выражение, куда входят величины концентраций в данный момент времени.

АНАЛИЗ ИЗОТЕРМЫ ВАНТ-ГОФФА

1. Главное значение изотермы реакции состоит в том, что она позволяет рассчитать ∆Gили ∆Fобратимый реакции для заданного состава реакционной смеси и определить, в каком направлении, и до какого предела протекает реакция при известных условиях.

а) Если Кр˃Кр’, то lnКр˃lnКр’; ∆G˂0- реакция идет самопроизвольно в прямом направлении.

б) Если Кр˂Кр’, то lnКр˂lnКр’; ∆G˃0- реакция протекает самопроизвольно в обратном направлении, в сторону образования продуктов.

в) Если Кр=Кр’, то lnКр=lnКр’; ∆G=0- равновесие.

Если парциальное давление всех участников реакции в данный момент времени равны атмосферному давлению

Пусть PA’=PB’=PC’=PD’=1( 1,013*10 5 Па), тоKp’=1; Тогда логарифм этого выражения будет равен нулю (lnKp’=0), а уравнение изотермы Вант – Гоффа примет вид:

∆G⁰=RTlnKp-стандартная энергия Гиббса

Выразм константу равновесия из последнего уравнения и получим:

Пример решения задачи:

В объеме 10л, взяли: 320(г) О2 , 10(г) Н2 и 180(г) паров воды . Определите, в какую направлении пойдёт химическая реакция: , если при температуре Т

(Кс=10). Процесс изохорный.

;

;

;

;

;

;

˂0 — реакция идет в прямом направлении.

ВЛИЯНИЕ ВНЕШНИХ УСЛОВИЙ НА КОНСТАНТУ

РАВНОВЕСИЯ. УРАВНЕНИЕ ИЗОБАРЫ И ИЗОХОРЫ ВАНТ-ГОФФА (В-Г)

Константы равновесия — это величины постоянные при данной температуре. При изменении температуры константа равновесия изменяется, и довольно существенно.

Изменение константы равновесия и направления химической реакции в зависимости от температуры количественно характеризует уравнение изобары изохоры химической реакции.

ВЫВОД УРАВНЕНИЯ ИЗОБАРЫ И ИЗОХОРЫ

Разделим уравнение изотермы Вант- Гоффа на температуру:

Продифференцируем его по Т и перепишем:

Представим уравнение Гиббса – Гельмгольца в виде:

Из уравнения (1) вычтем уравнение (2):

Эти уравнения показывают влияния температуры на константу равновесия, где определяющим фактором является тепловой эффект химической реакции.

Влияние температуры на константу равновесия определяется типом реакци.

1. Если тепловой эффект реакци ∆H(∆U)˃0(эндотермическая, поглощение), то ˃0, тогда при увеличении температуры (Т↑) константа равновесия Кр увеличивается.

В обратном — Т↓,Кр↓.

2. Если ∆H(∆U)˂0 (экзотермическая, выделение), то ˂0, тогда при повышении температуры константа равновесия Кр уменьшается или Кр увеличивается при понижении температуры.

В обратном — Т↑,Кр↓.

3. Если ∆H(∆U)=0 , тов этом случае константа равновесия не зависит от температуры Кp ≠ f(T).

ИНТЕГРИРОВАНИЕ ИЗОБАРЫ В-Г

1. Приближенное интегрирование ∆Н ≠ f(Т),

тогда ;

;

;

;

;

.

С помощью этого уравнения можно найти:

1. ∆Н (тепловой эффект реакции), если известны равновесия при двух различных температурах (Кр11) и Кр22))

2. Кр22) – константу равновесия при температуре Т2, если известна константа равновесия при другой температуре и тепловой эффект реакции (Кр11) и ∆Н).

Так как после интегрирования мы получили уравнение прямой, то эта зависимость может быть представлена на графике: lnKp(1) lnKp(2)

Тангенс угла наклона прямой реакции, исходя из уравнения прямой:

;.

Зависимость теплового эффекта от температуры выражается уравнением:

Подставим это уравнение в уравнение изобары Вант- Гоффа:

;

при Т=0(К)

Проинтегрируем это уравнение и получим:

;

где В — постоянная интегрирования, для нахождения необходимо знать значения константы равновесия Кр при любой фиксированной температуре.

Однако проводить расчеты с использованием данного уравнения довольно сложно и используется довольно редко.

Пример. Определим изменение эффекта реакции Fe+H2O+FeO+H2, если для Т1=900К, Кр1=1,452, а для Т2=1025К Кр2=1,285.

Используем уравнение:

При повышении температуры от 900 до 1025К выделится дополнительно 7,5 кДж/моль теплоты.

|следующая лекция ==>
Метод статистического моделирования нагрузки на ЭВМ|Строение и характеристика макроэргических соединений на примереАТФ

Дата добавления: 2016-02-02 ; просмотров: 9766 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнение идеального газа вант гоффа

Кафедра физической и коллоидной химии ЮФУ

Материалы к лекциям для студентов химфака

Термодинамический вывод выражения для константы равновесия

Теперь рассмотрим более строгий термодинамический вывод выражения для константы равновесия. Для этого необходимо ввести понятие химический потенциал . Очевидно, что величина свободной энергии системы будет зависеть как от внешних условий, так и от природы и количества веществ, составляющих систему. В случае если количества веществ изменяются в ходе процесса, изобарно-изотермический потенциал является функцией не только температуры и давления, но и количеств веществ:

(10)

Для изохорно-изотермического потенциала имеем:

(11)

При введении в некоторую систему бесконечно малого количество dni молей i-го компонента произойдёт изменение термодинамического потенциала системы на величину . При этом полный дифференциал G следует записать в следующем виде:

(12)

Аналогичным образом для полного дифференциала F получаем:

(13)

Частная производная термодинамического потенциала по числу молей компонента i-го компонента при постоянных количествах остальных компонентов есть химический потенциал μ i данного компонента в системе:

(14) (15)

Иначе говоря, химический потенциал i-го компонента равен приращению свободной энергии системы при добавлении одного моля данного компонента к большому объёму системы при постоянных температуре и давлении (объёме). Понятие «большой объём системы» означает, что состав системы практически не изменяется после добавления одного моля компонента. Химический потенциал чистого вещества равен свободной энергии одного моля этого вещества.

Учитывая вышесказанное, уравнения (12-13) можно переписать в виде:

(16)

(17)

При постоянстве температуры и давления (температуры и объёма) два первых слагаемых в уравнениях (16-17) обратятся в нуль. При этом получаем:

(18)

(19)

Поскольку условием равновесия является минимум свободной энергии системы (dG = 0, dF = 0), для состояния равновесия можно записать:

(20)

Для вывода соотношения между парциальными давлениями либо концентрациями компонентов в равновесной смеси воспользуемся данным общим условием равновесия через химические потенциалы. Получим выражение для изменения свободной энергии при протекании в системе химической реакции:

В закрытой системе изменение числа молей одного компонента сопровождается изменением числа молей остальных компонентов, пропорциональным стехиометрическим коэффициентам, взятым с соответствующим знаком («–» для исходных веществ, «+» для продуктов реакции); т.е., для приведенной выше химической реакции имеет место соотношение:

(21)

Здесь χ – т.н. химическая переменная , характеризующая только данную химическую реакцию. Поскольку dni = ν id χ , для полного дифференциала G можно записать следующее выражение:

(22)

(23)

Для системы, находящейся в состоянии равновесия получаем

(24)

Выражение (24) носит название уравнения Гиббса – Дюгема . Для получения изотермы химической реакции нам следует выразить химический потенциал компонента через его парциальное давление или концентрацию. Если химическая реакция проводится при постоянной температуре, то выражение

(25)

для полного дифференциала свободной энергии Гельмгольца преобразуется к виду dF = – PdV. Для одного моля идеального газа получаем:

(26)

(27)

Здесь g(T) – постоянная интегрирования, представляющая собой некоторую функцию от температуры. Поскольку для одного моля идеального газа величина, обратная объёму, есть молярная концентрация, данное выражение преобразуется к виду:

(28)

Как было показано ранее, для одного моля чистого вещества μ = F. Получаем:

(29)

Для каждого из нескольких веществ в смеси можно записать

(30)

Для стандартных условий (Сi = 1 моль/л) gi(T) = μ °i (стандартный химический потенциал). Окончательно получаем уравнение, связывающее химический потенциал компонента с его концентрацией:

(31)

Аналогичным образом можно получить

(32)

Подставив зависимость химического потенциала от парциального давления в уравнение (26), для состояния равновесия получаем:

(33)

Для системы, находящейся в изохорно-изотермических условиях, аналогично получаем

(34)

В уравнениях (33-34) Pi и Ci – равновесные парциальные давления и концентрации соответственно. Поскольку Σν i μ °i = const, получаем:

(35)

(36)

Для обсуждаемой химической реакции

выражения (35) и (36) можно преобразовать к виду

(37)

(38)

Потенцируя данные выражения, получаем, что в состоянии равновесия произведение концентраций либо парциальных давлений реагентов, взятых в степенях, равных стехиометрическим коэффициентам, при постоянной температуре есть некоторая постоянная величина – константа равновесия.

Изотерма химической реакции (изотерма Вант-Гоффа)

При самопроизвольном протекании химической реакции изменение свободной энергии системы отлично от нуля (ΔG χ , т.е. принять, что

Положив Δ χ = 1, получаем

(41)

Поскольку, как следует из (35,37), , окончательно получаем уравнение, называемое изотермой химической реакции (изотермой Вант-Гоффа):

(42)

(43)

Для изобарно-изотермического процесса аналогичным образом можно получить:

(44)

(45)

Уравнение изотермы Вант-Гоффа позволяет рассчитать максимальную работу химической реакции и тем самым определить возможность её самопроизвольного протекания в каких-либо конкретных условиях (при температуре Т и концентрациях реагентов Ci или парциальных давлениях Pi).


Copyright © В. В. Луков, С. И. Левченков, 2005.


источники:

http://helpiks.org/6-74883.html

http://physchem.chimfak.sfedu.ru/Source/Phys/physchem_23.htm