Уравнение идеальной и реальной жидкости

Уравнение Бернулли

Уравнение Бернулли для струйки жидкости формулируется следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Уравнение Бернулли выглядит так:

Подробное описание всех входящих в состав уравнения параметров уже описан в этой статье.

Содержание статьи

Смысл уравнения Бернулли

По существу вывода уравнение Бернулли для струйки идеальной жидкости представляет собой закон сохранения механической энергии, составленный применительно к единице массового расхода жидкости. Это следует из того, что в процессе вывода значения работы сил, приложенных к выделенному объему струйки и значения кинетической энергии этого объема были поделены на величину ρqΔT.

Отсюда вытекает, что поскольку член υ 2 /2 является мерой кинетической энергии единицы массы движущейся жидкости, то сумма членов gz+p/ρ будет мерилом ее потенциальной энергии.

В отношении величины gz это очевидно, ведь если частица жидкости массы m расположена на высоте z относительно некоторой плоскости и находится под действием сил тяжести, то способность ее совершить работу, т.е. её потенциальная энергия относительно этой плоскости равняется mgz. Но если её поделить на массу частиц m, то эта часть потенциальной энергии даст величину gz.

Для более ясного физического представления о том, что потенциальная энергия измеряется величиной p/ρ рассмотрим такую схему: пусть к трубе, заполненной жидкостью с избыточным давлением p, присоединен пьезометр, снабженный на входе в него краном.

Кран сначала закрыт, т.е. пьезометр свободен от жидкости, а элементарный объем жидкости ΔV массой ρ*ΔV перед краном находится под давлением p.

Если затем открыть кран, то жидкость в пьезометре поднимется на некоторую высоту, равную

Таким образом, единица массы, находящейся под давлением p, как бы несет в себе ещё заряд потенциальной энергии, определяемой величиной p/ρ.

В гидравлике для характеристики удельной энергии обычно используется понятие напор, под которым понимают энергию жидкости, отнесенную к единице силы тяжести, а не её массы. В соответствии с этим уравнение Бернулли записанное в начале этой статьи примет вид

Такое уравнение Бернулли для элементарной струйки идеальной жидкости в другой форме, весьма удобно для гидравлических расчетов и может быть сформулировано следующим образом.

Для элементарной струйки идеальной жидкости полный напор, т.е. сумма геометрического, пьезометрического и скоростного напоров, есть величина постоянная во всех её сечениях.

Отсюда следует, что между напором и удельной энергией существует очень простая зависимость

где э – удельная энергия

Уравнение Бернулли для элементарной струйки реальной жидкости

Если вместо идеальной жидкости рассматривать жидкость реальную, то уравнение Бернулли для реальной жидкости должно принять несколько другой вид.

При движении идеальной жидкости её полная удельная энергия или напор сохраняет постоянное значение по длине струйки, а при движении реальной жидкости эта энергия будет убывать по направлению движения. Причиной этого являются затраты энергии на преодоление сопротивлений движению, обусловленные внутренним трением в вязкой жидкости.

Если же мы рассмотрим два сечения для струйки идеальной жидкости: 1-1 в начале и 2-2 в конце струйки, то полная удельная энергия будет

Полная удельная энергия для сечения 1-1 всегда будет больше, чем полная удельная энергия для сечения 2-2 на некоторую величину потерь, и уравнение Бернулли в этом случае получается

Величина Э1-2 представляет собой меру энергии, потерянную единицей массы жидкости на преодоление сопротивлений при её движениями между указанными сечениями.

Соответствующий этой потере удельной энергии напор называют потерей напора между сечениями 1-1 и 2-2 и обозначают h1-2 . Поэтому уравнение Бернулли для элементарной струйки реальной жидкости можно представить в виде

Уравнение Бернулли для потока реальной жидкости

Уравнение Бернулли для струйки реальной жидкости это еще только половина дела, ведь в при решении различных практических вопросов о движении жидкостей приходится иметь дело с потоками конечных размеров. Уравнение Бернулли в этом случае может быть получено, исходя из рассмотрения потока как совокупности множества элементарных струек.

Учитывая, что все струйки движутся с одной и той же средней скоростью форма записи уравнения Бернулли для потока идеальной жидкости становится идентичной его записи для элементарной струйки.

В таком виде уравнение Бернулли обычно и применяется при решении практических задач для потоков однородной несжимаемой жидкости при установившемся движении, происходящем под действием одной силы тяжести.

Такое уравнение составляется для различных живых сечений потока, вблизи которых движение жидкости должно удовлетворять условиям медленно изменяющегося движения, хотя на пути между этими сечениями движение может и не удовлетворять указанным условиям.

Слагаемое h1-2 в этом уравнении показывает потери напора на преодоление сопротивлений движению жидкости. При этом в гидравлике различают два основных вида сопротивлений:
— hлп — линейные потери — сопротивления, проявляющиеся по всей длине потока, обусловленные силами трения частиц жидкости друг о друга и о стенки, ограничивающие поток.
— hмп — местные потери – местные сопротивления, обусловленные различного рода препятствиями, устанавливаемыми в потоке (задвижка, кран, колено), приводящими к изменениям величины или направления скорости течения жидкости

Поэтому полная потеря напора между двумя сечениями потока при наличии сопротивлений обоих видов будет

Видео по теме

Уравнение Бернулли подходит и для газов. Явление уменьшения давления при повышении скорости потока является основой работы различных приборов для измерения расхода. Закон Бернулли справедлив и для жидкостей вязкость которых равна нулю. При описании течения таких жидкостей используют уравнение Бернулли с добавлением слагаемых учитывающих потери на местные сопротивления.

УРАВНЕНИЯ СОСТОЯНИЯ ИДЕАЛЬНЫХ И РЕАЛЬНЫХ ЖИДКОСТЕЙ

1. Простейшей механической моделью сплошной среды является модель идеальной жидкости, для которой характерно отсутствие сопротивления (сил трения) при скольжении одного слоя жидкости по другому. Отдельные части взаимодействуют только в виде нормального давления. То есть, В любой точке идеальной жидкости касательные напряжения равны 0, а нормальные sII = -Р; (или через компоненты девиатора напряжений): Sij = 0 (i, j = 1,2,3).

Уравнением состояния для идеальной жидкости служит зависимость плотности r от давления Р и температуры Т:

r = f (р,Т). (8.1.1)

Например, для идеального газаприемлемо уравнение Клапейрона -Менделеева: r = RTp.

Если плотность жидкости — функция только давления r = f(p), то жидкость называют баротропной.

Когда имеет место степенная зависимость r = ср n , то говорят, что движение происходит при политропическом процессе.

Для капельных жидкостей, сжимаемость для которых чрезвычайно мала, в большом диапазоне изменения давления связь между плотностью и давлением линейна: ,

r0 — плотность, соответствующая давлению р0, Кж — модуль объёмного сжатия, порядок которого равен 10 4 nМПа.

Экспериментальные данные и общие физические представления показывают, что при больших температурах и давлениях любая среда практически обладает свойствами идеальной жидкости.

В нормальных условиях модель идеальной жидкости широко используется при изучении движения многих жидкостей и газов вдали от твёрдых границ.

Одно из наиболее известных уравнений движения идеальной жидкости — закон Бернулли:

который гласит: При установившемся движении несжимаемой идеальной жидкости сумма геометрической, скоростной и пьезометрической высот вдоль линии тока остаётся величиной постоянной.

2. В тех случаях, когда силами трения или напряжения сдвига при движении жидкости пренебречь нельзя, используют следующую по сложности модель- вязкую ньютоновскую жидкость. Уравнениями состояния для такой жидкости, кроме уравнения (8.1.1) , будет

sij = 2µlij (i, j = 1,2,3). (8.1.2)

Т.е. между компонентами девиатора напряжений и скоростей деформации существует прямо пропорциональная связь.

Или через компоненты тензоров напряжений и скоростей деформации

Например, при плоском слоистом течении жидкости вдоль оси Ох1, когда v1 = v1(x1, x2), v2 = v3 = 0, нормальные и касательные напряжения равны

Если, кроме того, жидкость несжимаема (div v = 0) и скорость v1 не зависит от x1 , то уравнение состояния имеет простейший вид

Коэффициент пропорциональности m называется коэффициентом вязкости или динамической вязкостью жидкости.

Размерность коэффициента динамической вязкости [m] = [(сила× длина):(длина 2 ×скорость)] = [сила×время/длина 2 ]. В системе СИ единицей вязкости является паскаль-секунда 1Па×с = 1н×с/м 2 . Величина 1 пуаз = 0.1 Па×с. Динамическая вязкость воды при 20°С равна 10 -3 Па×с.

Иногда пользуются отношением m/r, которое называется кинематической вязкостьюи обозначается буквой n. Размерность кинематической вязкости м 2 /с.

Для газов и капельных жидкостей динамическая и кинематическая вязкости слабо зависят от давления, но сильно от температуры: убывают с повышением температуры, а у воздуха — растут.

Т°С
Вода, Па×с1.7921.0050.6560.4690.3570.284
Вода, м 2 /с1.7921.0070.6610.4770.3670.296
Воздух, Па с1.7091.8081.9041.9972.0882.175
Воздух, м 2 /с0.1320.1500.1690.1880.2090.230

Для учёта зависимости вязкости от температуры существует много различных эмпирических формул, но практики предпочитают пользоваться табличными значениями.

Свойствами ньютоновских жидкостей, описываемых уравнениями (8.1.2), обладает большинство чистых жидкостей и газов. Многие растворы, в том числе буровые и тампонажные, проявляют свойства, отличные от свойств ньютоновских жидкостей.

Вязкость неньютоновских жидкостей зависит не только от температуры и давления, но и от скорости сдвига, деформации, времени, характера движения.

3. Основной признак неньютоновского поведения жидкостейзаключается в нелинейном поведении компонент девиаторов напряжений и скоростей деформации.

Как вы помните, на рис. 1.4 изображены характерные кривые зависимости напряжения сдвига s12 = t от скорости деформации сдвига для неньютоновских жидкостей при плоском прямолинейном установившемся движении вдоль оси Ох1. Поведение жидкости, описываемое кривой 3, называется псевдопластичным, а кривой 4 — дилатантным. Различными авторами предлагалось множество аппроксимаций этих кривых, но наиболее широкое применение получили двухпараметрические аппроксимации:

Ø Модель Шведова — Бингама для псевдопластичных жидкостей (вязкопластичная бингамовская жидкость).

(8.1.3)

Характеризуется тем, что обладает пространственной жёсткой структурой и благодаря этому сопротивляется внешнему воздействию до тех пор, пока вызванное им напряжение сдвига не превзойдёт предельного значения, соответствующего этой структуре. После этого структура полностью разрушается и жидкость начинает вести себя как обычная ньютоновская вязкая жидкость при кажущемся напряжении, равном избытку действительного напряжения t над предельным t0 .

Ø Модель Освальда — Вейля (степенная), используемая для обоих типов жидкостей:

, (8.1.4)

где t0 — предельное (или динамическое) напряжение сдвига; h — пластическая (структурная) вязкость; k — показатель консистенции; n — показатель неньютоновского поведения: при n 1 — дилатантная.

Между параметрами моделей устанавливается следующая связь:

где — скорость деформации сдвига, выше которой зависимость t от практически линейна.

Отметьте тот факт, что реологические параметры h,t0,k, n — для тампонажного и бурового растворов зависят от температуры, давления, состава, диапазона изменения скорости деформации сдвига , для которой справедливы модели (8.1.3) и (8.1.4).

4. Чтобы установить характер зависимости между касательными напряжениями и скоростями деформации сдвига и определить реологические параметры жидкости в заданных условиях, используют наиболее простые формы движения:

Ø установившееся ламинарное (слоистое) течение жидкости вдоль оси цилиндрической трубы;

Ø тангенциальное течение между двумя соосными цилиндрами.

При этих течениях линии тока либо прямые линии, либо — концентрические окружности. Такие течения можно создать лишь в специальных приборах: капиллярных или ротационных вискозиметрах.

При течении жидкости между двумя вертикальными соосными цилиндрами длиной , из которых наружный вращается с угловой скоростью w, реологические параметры для бингамовской жидкости могут быть определены из соотношения:

,

а для жидкости, соответствующей степенной модели:

,

где М — вращающий момент, приложенный к наружному цилиндру; a = R0/R; R0 и R — радиусы внутреннего и внешнего цилиндров соответственно.

Для произвольного течения несжимаемых (x = 0) вязкопластичных жидкостей используются следующие уравнения состояния, обобщающие уравнения (8.1.2) и модели (8.1.3), (8.1.4) :

lij = 0 при T £ t0,

, (8.1.6)

где Н1 — интенсивность скоростей деформаций сдвига при x = 0:

,

Т — интенсивность касательных напряжений,

.

При определённых нестационарных режимах течения буровые и тампонажные растворы могут проявлять особые свойства неньютоновского поведения:

Ø тиксотропность -зависимость жёсткости структуры от продолжительности деформирования и предыстории движения;

Ø запаздывание во времени установления деформации при действии постоянного напряжения или, наоборот, запаздывание во времени установления напряжений при постоянной деформации(релаксация напряжений).

5. Эмпирически установлено, что по мере увеличения скорости течения всякое упорядоченное движение частиц жидкости постепенно нарушается и переходит в новую форму — турбулентное движение, при котором движение частиц становится неупорядоченным (хаотичным).Несмотря на то, что первые наблюдения турбулентного течения были сделаны более 100 лет тому назад, до настоящего времени нет строгой теории, каким образом ламинарное движение перерождается в турбулентное.В 1883 годуО. Рейнольдс впервые обнаружил, что переход ламинарного движения в турбулентное наступает при достижении некоторого критического значения параметра, который известен нам как параметр Рейнольдса:

, (8.1.7)

где — средняя скорость потока; d — диаметр трубы; r, m — плотность и вязкость жидкости.

Для ньютоновских жидкостей наиболее вероятная нижняя граница = 2320, а верхняя » 50000. При этом, чем плавнее вход в трубу, тем позже наступает турбулентный режим. Помимо этого на величину верхней границы Reкр сильное влияние оказывают следующие факторы:

Ø сильное отклонение трубы от цилиндрической формы;

Ø заметная шероховатость поверхности трубы;

Ø наличие в жидкости твёрдых тел, коллоидных или дисперсных образований;

Ø изменение граничных условий;

Ø действие внешних возмущений и т.д.

Для вязкопластичных сред переход от структурного к турбулентному режиму течения принято определять по величине обобщённого параметра Рейнольдса:

Ø для степенной модели , (8.1.8)

Ø для модели Бингама . (8.1.9)

Нижняя граница обобщённых параметров Re¢ и Re* равна 2100. Отличительным признаком турбулентных течений является зависимость скорости от времени в любой точке потока.

Для количественного описания турбулентных течений Рейнольдс предложил действительные скорости (давления) в данной точке представлять в виде суммы средних во времени величин и пульсационных составляющих. Для развитого турбулентного течения пульсационные составляющие пренебрежимо малы со средними значениями величин, поэтому сохраняется интегральная теорема движения, эквивалентная трём дифференциальным уравнениям + уравнение неразрывности.

В этом случае вместо обычных значений величин используются их средние значения, а вместо напряжений sij используется сумма компонент напряжений, связанных со средними скоростями + напряжения Рейнольдса:

. (8.1.10)

Иначе говоря, для решения задач турбулентного течения возможно применение уравнений механики сплошной среды, при условии, что величины vi, p, sij , входящие в эти уравнения, будут соответственно заменены на величины

Дата добавления: 2016-01-09 ; просмотров: 843 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнение идеальной и реальной жидкости

Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы — круг (рис.3.1, б); живое сечение клапана — кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Смоченный периметр χ («хи») — часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Для круглой трубы

если угол в радианах, или

Расход потока Q — объем жидкости V, протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ — скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R — отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока — трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное — течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q.

Для измерения давления жидкости применяют пьезометры — тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0, называемой плоскостью сравнения, будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;
— удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
— удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; — пьезометрические высоты; — скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.

Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).

Потерянная высота складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)

Для измерения скорости в точках потока широко используется работающая на принципе уравнения Бернулли трубка Пито (рис.3.7), загнутый конец которой направлен навстречу потоку. Пусть требуется измерить скорость жидкости в какой-то точке потока. Поместив конец трубки в указанную точку и составив уравнение Бернулли для сечения 1-1 и сечения, проходящего на уровне жидкости в трубке Пито получим

где Н — столб жидкости в трубке Пито.

Для измерения расхода жидкости в трубопроводах часто используют расходомер Вентури, действие которого основано так же на принципе уравнения Бернулли. Расходомер Вентури состоит из двух конических насадков с цилиндрической вставкой между ними (рис.3.7). Если в сечениях I-I и II-II поставить пьезометры, то разность уровней в них будет зависеть от расхода жидкости, протекающей по трубе.

Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений I-I и II-II:

Выражение, стоящее перед , является постоянной величиной, носящей название постоянной водомера Вентури.

Из полученного уравнения видно, что h зависит от расхода Q. Часто эту зависимость строят в виде тарировочной кривой h от Q, которая имеет параболический характер.


источники:

http://helpiks.org/6-46974.html

http://gidravl.narod.ru/osnovdin.html