Уравнение интерференции при падении света на тонкую пленку

Интерференция на тонких пленках

Интерференция в проходящем свете. Осветим тонкую прозрачную пленку (например, мыльную) с абсолютным показателем преломления п светом, длина волны которого в вакууме l. Будем

Рис. 19.12смотреть на пленку с противоположной стороны (рис. 19.12), т. е. будем наблюдать свет, проходящий через пленку. Выясним, при каком значении толщины пленки h будет наблюдаться максимум освещенности, а при каком – минимум. Читатель: Честно говоря, не очень понятно, почему здесь должна возникнуть интерференция? Автор: Дело в том, что некоторые лучи просто проходят пленку насквозь, а некоторые отражаются от
Рис. 19.13

границы «пленка–воздух», идут назад, снова отражаются от границы «воздух–пленка» и лишь после этого выходят наружу (рис. 19.13). (Конечно, найдутся лучи, которые испытают несколько пар отражений, но их доля в общем «балансе» будет не так велика, ведь часть световых волн будет уходить обратно, т.е. туда, откуда пришли.)

Интерференция будет проходить между лучом (правильнее сказать, конечно, световой волной) 1¢ и лучом 2¢. Геометрическая разность хода этих лучей (разность длин пройденных путей) равна Ds = 2h. Оптическая разность хода D = пDs = 2пh.

; (19.8)

. (19.9)

Если в формуле (19.9) положить k = 0, получим , именно при такой длине наступает первый минимум освещенности в проходящем свете.

Интерференция в отраженном свете.Рассмотрим ту же самую пленку с противоположной стороны (рис. 19.14). В данном случае мы будем наблюдать интерференцию за счет взаимодействия лучей 1¢ и 2¢: луч 1¢ отразился от границы «воздух–пленка», а луч 2¢ – от границы «пленка–воздух» (рис. 19.15).

Рис. 19.14 Рис. 19.15

Читатель: По-моему, здесь ситуация точно такая же, как и с проходящим светом: Ds = 2h; D = пDs = 2nh, а для hmax и hmin справедливы формулы (19.8) и (19.9).

Автор: Значит, при мы будем иметь минимум освещенности в отраженном свете?

Автор: И минимум в проходящем? Получается, что свет войдет в пленку, а наружу не выйдет, так как и спереди, и сзади – минимум освещенности. Куда же делась световая энергия, если пленка не поглощает света?

Читатель: Да, такое, действительно, невозможно. Но где же ошибка?

Автор: Тут необходимо знать один экспериментальный факт. Если световая волна отражается от границы среды более оптически плотной с менее оптически плотной (стекло–воздух), то фаза отраженной волны равна фазе падающей (рис. 19.16, а). А вот если отражение проходит на границе среды, оптически менее плотной, со средой, более плотной (воздух–стекло), то фаза волны уменьшается на p (рис. 19.16, б). А это значит, что оптическая разность хода уменьшается на половину длины волны , т.е. луч 1¢, отраженный от внешней поверхности пластины (см. рис. 19.15), «теряет» полволны, и за счет этого отставание от него второго луча в оптической разности хода уменьшается на l/2.

Таким образом, оптическая разность хода лучей 2¢ и 1¢ на рис. 19.15 будет равна

.

Тогда условие максимума запишется в виде

(19.10)

(19.11)

Сравнивая формулы (19.8) и (19.11), (19.9) и (19.10), видим, что при одном и том же значении h достигается минимум освещенности в проходящем свете и максимум в отраженном или же максимум в проходящем и минимум в отраженном. Иными словами, свет либо главным образом отражается, либо проходит насквозь в зависимости от толщины пленки.

Задача 19.5. Просветление оптики. Чтобы уменьшить долю отраженного света от оптических стекол (например, от объективов фотоаппарата) на их поверхность наносят тонкий слой прозрачного вещества, у которого показатель преломления п меньше, чем у стекла (так называемый метод просветления оптики). Оцените толщину нанесенного слоя, считая, что лучи падают на оптическое стекло приблизительно нормально (рис. 19.17).

Рис. 19.17

Решение. Для уменьшения доли отраженного света необходимо, чтобы лучи 1 и 2 (см. рис. 19.17), отраженные от внешней и внутренней поверхности пленки, соответственно «гасили» друг друга.

Заметим, что оба луча при отражении от более оптически плотной среды теряют по полволны каждый. Поэтому оптическая разность хода будет равна D = 2nh.

Условие минимума будет иметь вид

Минимальная толщина пленки hmin, соответствующая k = 0,

.

Оценим величину hmin. Возьмем l = 500 нм, п = 1,5, тогда

м = 83 нм.

Заметим, что при любой толщине пленки погасить на 100 % можно только свет определенной длины волны (при условии отсутствия поглощения!). Обычно «гасят» свет средней части спектра (желтый и зеленый). Остальные цвета при этом гасятся значительно слабее.

Читатель: А чем объяснить радужную окраску пленки бензина в луже?

Автор: Здесь тоже имеет место интерференция, как при просветлении оптики. Поскольку толщина пленки в разных местах различно, то в одном месте гасятся одни цвета, а в других – другие. «Непогашенные» цвета мы и видим на поверхности лужи.

СТОП! Решите самостоятельно: В6, С1–С5, D1.

Кольца Ньютона

Рис. 19.18

Задача 19.6. Рассмотрим подробно уже описанный нами опыт (рис. 19.18): на плоской стеклянной пластине лежит плосковыпуклая линза радиусом R. Сверху на линзу падает свет с длиной волны l. Свет является монохроматичным, т.е. длина волны жестко фиксирована и не меняется со временем. При наблюдении сверху видна интерференционная картина из концентрических светлых и темных колец (кольца Ньютона). При этом по мере удаления от центра кольца становятся более узкими. Требуется найти радиус N-го темного кольца (считая от центра).

R N lРешение. Интерференция возникает за счет наложения луча 1¢, отраженного от нижней поверхности линзы, и луча 2¢, отраженного от стеклянной пластины (см. рис. 19.18). Сначала решим чисто геометрическую задачу: по данным величинам R и r вычислим величину отрезка h
rN = ?

(рис. 19.19). Именно этот отрезок определяет геометрическую разность хода лучи 1¢ и 2¢.

Рис. 19.19

Рассмотрим DОВС: (по теореме Пифагора),

h = АC = ОА – ОС = . (1)

Попробуем немного упростить выражение (1), учитывая, что r > x и l >> d, упростим выражение

Итак: .

, (19.13)

, (19.14)

Расстояние между соседними минимумами называется шириной интерференционной полосы.

Найдем расстояние между (k + 1)-м и k-м минимумами:

.

Запомним: ширина интерференционной полосы не зависит от порядкового номера полосы и равна

. (19.15)

СТОП! Решите самостоятельно: А9, А10, В8–В10, С10.

Билинза

Задача 19.6. Собирающая линза с фокусным расстоянием F = = 10 см разрезана пополам и половинки раздвинуты на расстояние h = 0,50 мм. Найти: 1) ширину интерференционных полос; 2) число интерференционных полос на экране, расположенном за линзой на расстоянии D = 60 см, если перед линзой имеется точечный источник монохроматического света с длиной волны l = 500 нм, удаленный от нее на расстояние а = 15 см.

F = 10 см h = 0,50 мм D = 60 см l = 500 нм а = 15 смРешение. 1. Прежде всего, выясним, почему линза, разрезанная на две половинки, дает интерференционную картину. Дело в том, что точечный источник S дает в каждой половинке по изображению S1 и S2 (рис. 19.24). Изображения эти действительные и являются когерентными источниками света, поскольку имеют общее происхождение – источник S.
Dх = ? N = ?

Рис. 19.24

Далее наша задача сводится к опыту Юнга, если мы сумеем найти расстояние d между источниками S1 и S2 и расстояние от источников до экрана l.

2. Сначала найдем расстояние b от линзы до изображений S1 и S2. Применим формулу линзы:

см.

Тогда расстояние от источников до экрана:

l = D – b = 60 – 30 = 30 cм.

3. Найдем расстояние между источниками. Для этого рассмотрим подобные треугольники SO1O2 и SS1S2. Из их подобия следует

.

4. Теперь мы вполне можем воспользоваться формулой (19.15) и вычислить ширину интерференционной полосы:

= м = 0,10 мм.

5. Чтобы определить, сколько интерференционных полос получится на экране, изобразим поле интерференции, т.е. ту область, в которой перекрываются волны от когерентных источников S1 и S2 (рис. 19.25).

Рис. 19.25

Как видно из рисунка, лучи от источника S1 покрывают область S1AA1, а лучи от источника S2 покрывают область S2ВВ1. Поле интерференции – область, которая является пересечением этих областей, показана более темной штриховкой. Размер интерференционной полосы на экране – это отрезок АВ1, обозначим его длину через L.

Рассмотрим треугольники SO1O2 и SAB1. Из их подобия следует

Если на участке длиной L содержатся N полос, длиной Dх каждая, то

Интерференция света

Интерференция света

Явление интерференции свидетельствует о том, что свет — это волна.

Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.

Условия интерференции

Волны должны быть когерентны. Когерентность – согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз.

Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели.
Свет от точечного монохроматического источника S падал на два небольших отвер­стия на экране. Эти отверстия действуют как два когерентных источника света S1 и S2.
Волны от них интерферируют в области перекрытия, проходя разные пути: 1 и ℓ2.
На экране наблюдается чередование светлых и темных полос.

Условие максимума.

Пусть разность хода между двумя точками ,

тогда условие максимума:
т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, . ).

Условие минимума

Пусть разность хода между двумя точками ,

тогда условие минимума: ,

т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, . ).

Интерференция света в тонких пленках

Различные цвета тонких пленок — результат интерфе­ренции двух волн, отражаю­щихся от нижней и верхней по­верхностей пленки. При отражении от верх­ней поверхности пленки проис­ходит потеря полуволны. Сле­довательно, оптическая раз­ность хода .

Тогда условие максимального усиле­ния интерферирующих лучей в отраженном свете следую­щее: .

Если потерю полуволны не учитывать, то .

Кольца Ньютона

Интерференционная карти­на в тонкой прослойке воздуха между стеклянными пластина­ми — кольца Ньютона.

Волна 1 — результат отра­жения ее от точки А (граница стекло —воздух). Волна 2 — отражение от плоской пласти­ны (точка В, граница воздух — стекло). Волны когерентны: возникает интерференционная картина в прослойке воздуха между точками А и В в виде-концентрических колец. Зная радиусы колец, можно вычислить длину волны, используя формулу , где r — радиус кольца, R — радиус кри­визны выпуклой поверхности линзы.

Использование интерференции в технике

Проверка качества обра­ботки поверхности до одной де­сятой длины волны. Несовершенство обра­ботки определяют но искрив­лению интерференционных по­лос, образующихся при отра­жении света от проверяемой поверхности. Интерферометры служат для точного измерения показателя преломления газов и других веществ, длин световых волн.

Просветление оптики. Объективы фотоаппаратов и кинопроекторов, перископы под­водных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполиро­ванная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, исполь­зуется явление интерференции света.

На поверхность оптическо­го стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна: . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следо­вательно, , где n — показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому . При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы пол­ное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета):

.

Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света.

Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки

Уравнение интерференции при падении света на тонкую пленку

Интерференция в тонких пленках

Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. Один из способов, использующих такой метод, – опыт Поля.

В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки (рис. 8.7).

В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.

Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S1 и S2 источника S, создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S. Этот опыт предъявляет менее жесткие требования к размерам источника S, чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами.

Полосы равного наклона

Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 8.8).

В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC:

.

Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как , (h – толщина пластинки, и – углы падения и преломления на верхней грани; ), то для разности хода получаем

.

Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна:

,

где – длина волны в вакууме.

В соответствии с последней формулой светлые полосы расположены в местах, для которых , где mпорядок интерференции. Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален.

Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая.

Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис. 8.9). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя , дает , а луч 2, отражаясь от з2 и далее от , дает . Пластинки и одинаковы по размерам. ставится для компенсации разности хода второго луча. Лучи и когерентны и интерферируют.

Интерференция от клина. Полосы равной толщины

Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.

Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина).

Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость).

Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности.

Результат интерференции в точках и экрана определяется по известной формуле , подставляя в неё толщину пленки в месте падения луча ( или ). Свет обязательно должен быть параллельным ( ): если одновременно будут изменяться два параметра b и α, то устойчивой интерференционной картины не будет.

Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины.

На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают.

Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.

Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона.

Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщина h воздушного зазора связана с расстоянием r до точки касания (рис. 8.13):

.

Здесь использовано условие . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине , поэтому для радиуса m-го темного кольца получаем

(m = 0, 1, 2, …).

Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.

Итак, полосы равного наклона получаются при освещении пластинки постоянной толщины ( ) рассеянным светом, в котором содержатся лучи разных направлений. Полосы равной толщины наблюдаются при освещении пластинки переменной толщины (клина) ( ) параллельным пучком света. Полосы равной толщины локализованы вблизи пластинки.


источники:

http://www.eduspb.com/node/1808

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%9A%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%B8%20%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B.%20%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F%20%D0%B8%20%D0%B2%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D0%B0%D1%8F%20%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0/08-5.htm