Уравнение использование формулы двойного угла

Формулы двойного угла в тригонометрии

Формулы двойного угла служат для выражения синусов, косинусов, тангенсов, котангенсов угла со значением 2 α , используя тригонометрические функции угла α . Данная статья познакомит со всеми формулами двойного угла с доказательствами. Будут рассмотрены примеры применения формул. В заключительной части будут показаны формулы тройного, четверного углов.

Список формул двойного угла

Для преобразования формул двойного угла следует помнить о том, что углы в тригонометрии имеют вид n α записи, где n является натуральным числом, значение выражение записывается без скобок. Таким образом, считается, что запись sin n α имеет то же значение, что и sin ( n α ) . При обозначении sin n α имеем аналогичную запись ( sin α ) n . Использование записи применимо для всех тригонометрических функций со степенями n .

Ниже приведены формулы двойного угла:

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α — sin 2 α , cos 2 α = 1 — 2 · sin 2 α , cos 2 α = 2 · cos 2 α — 1 t g 2 α = 2 · t g α 1 — t g 2 α c t g 2 α — c t g 2 α — 1 2 · c t g α

Отметим, что данные формулы sin и cos применимы с любым значением угла α . Формула тангенса двойного угла справедлива при любом значении α , где t g 2 α имеет смысл, то есть α ≠ π 4 + π 2 · z , z является любым целым числом. Котангенс двойного угла существует при любом α , где c t g 2 α определен на α ≠ π 2 · z .

Косинус двойного угла имеет тройную запись двойного угла. Все они являются применимыми.

Доказательство формул двойного угла

Доказательство формул берет начало из формул сложения. Применим формулы синуса суммы:

sin ( α + β ) = sin α · cos β + cos α · sin β и косинуса суммы cos ( α + β ) = cos α · cos β — sin α · sin β . Предположим, что β = α , тогда получим, что

sin ( α + α ) = sin α · cos α + cos α · sin α = 2 · sin α · cos α и cos ( α + α ) = cos α · cos α — sin α · sin α = cos 2 α — sin 2 α

Таким образом доказываются формулы синуса и косинуса двойного угла sin 2 α = 2 · sin α · cos α и cos 2 α = cos 2 α — sin 2 α .

Остальные формулы cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 приводят к виду cos 2 α = cos 2 α = cos 2 α — sin 2 α , при замене 1 на сумму квадратов по основному тождеству sin 2 α + cos 2 α = 1 . Получаем, что sin 2 α + cos 2 α = 1 . Так 1 — 2 · sin 2 α = sin 2 α + cos 2 α — 2 · sin 2 α = cos 2 α — sin 2 α и 2 · cos 2 α — 1 = 2 · cos 2 α — ( sin 2 α + cos 2 α ) = cos 2 α — sin 2 α .

Для доказательства формул двойного угла тангенса и котангенса применим равенства t g 2 α = sin 2 α cos 2 α и c t g 2 α = cos 2 α sin 2 α . После преобразования получим, что t g 2 α = sin 2 α cos 2 α = 2 · sin α · cos α cos 2 α — sin 2 α и c t g 2 α = cos 2 α sin 2 α = cos 2 α — sin 2 α 2 · sin α · cos α . Разделим выражение на cos 2 α , где cos 2 α ≠ 0 с любым значением α , когда t g α определен. Другое выражение поделим на sin 2 α , где sin 2 α ≠ 0 с любыми значениями α , когда c t g 2 α имеет смысл. Чтобы доказать формулу двойного угла для тангенса и котангенса, подставим и получим:

t g 2 α = sin 2 α cos 2 α = 2 · sin α · cos α cos 2 α — sin 2 α = 2 · sin α · cos α cos 2 α cos 2 α — sin 2 α cos 2 α = 2 · sin 2 α cos 2 α 1 — sin 2 α cos 2 α = 2 · t g α 1 — t g 2 α c t g 2 α = cos 2 α sin 2 α = cos 2 α — sin 2 α 2 · sin α · cos = cos 2 α — sin 2 α sin 2 α 2 · sin α · cos α sin 2 α = cos 2 α sin 2 α — 1 2 · cos α sin α = c t g 2 α — 1 2 · c t g α

Примеры использования формул двойного угла

Данный пункт показывает несколько примеров решения с формулами двойного угла. Конкретные примеры помогут глубже понять изучаемый материал. Чтобы убедиться в справедливости формул 2 α для α = 30 ° , применим значения тригонометрических функций для этих углов. Если α = 30 ° , тогда 2 α = 60 ° . Проверим значения sin 60 ° = 2 · sin 30 ° · cos 30 ° , cos 60 ° = cos 2 30 ° — sin 2 30 ° .

Подставив значения, получим t g 60 ° = 2 · t g 30 ° 1 — t g 2 30 ° и c t g 60 ° = c t g 2 30 ° — 1 2 · c t g 30 ° . .

Известно, что sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 и

sin 60 ° = 3 2 , cos 60 ° = 1 2 , t g 60 ° = 3 , c t g 60 ° = 3 3 , тогда отсюда видим, что

2 · sin 30 ° · cos 30 ° = 2 · 1 2 · 3 2 = 3 2 , cos 2 30 ° — sin 2 30 ° = ( 3 2 ) 2 — ( 1 2 ) 2 = 1 2 , 2 · t g 30 ° 1 — t g 2 30 ° = 2 · 3 2 1 — ( 3 3 ) = 3

и c t g 2 30 ° — 1 2 · c t g 30 ° = ( 3 ) 2 — 1 2 · 3 = 3 3

Проведя вычисления, можно сделать вывод, что справедливость для α = 30 ° подтверждена.

Основное использование тригонометрических формул двойного угла – это преобразования тригонометрических выражений. Рассмотрим пример применения двойного угла, года имеем угол, отличный от 2 α . В примере допускается применение формулы двойного угла 3 π 5 . Тогда его необходимо преобразовать, в результате чего получим α = 3 π 5 : 2 = 3 π 10 . Отсюда следует, что формула двойного угла для косинуса будет иметь вид cos 3 π 5 = cos 2 3 π 10 — sin 2 3 π 10 .

Представить sin 2 α 3 через тригонометрические функции, при α 6 .

Заметим, что из условия имеем 2 α 3 = 4 · α 6 . Тогда использовав 2 раза формулу двойного угла, выразим sin 2 α 3 через тригонометрические функции угла α 6 . Применяя формулу двойного угла, получим sin 2 α 3 = 2 · sin α 3 · cos α 3 . После чего к функциям sin α 3 и cos α 3 применим формулы двойного угла: sin 2 α 2 = 2 · sin α 3 · cos α 3 = 2 · ( 2 · sin α 5 · cos α 6 ) · ( cos 2 α 6 — sin α 6 ) = = 4 · sin α 6 · cos 3 α 6 — 4 · sin 3 α 6 · cos α 6

Ответ: sin 2 α 3 = 4 · sin α 6 · cos 3 α 6 — 4 · sin 3 α 6 · cos α 6 .

Формулы тройного, четверного и т.д. угла

Таким же образом выводятся формулы тройного, четверного и т.д. углов. Формулы тройного угла можно вывести из формул сложения двойного угла.

sin 3 α = sin ( 2 α + α ) = sin 2 α · cos α + cos 2 α · sin α = 2 · sin α · cos α · cos α + ( cos 2 α — sin 2 α ) · sin α = = 3 · sin α · cos 2 α — sin 3 α

При замене cos 2 α на 1 — sin 2 α из формулы sin 3 α = 3 · sin α · cos 2 α — sin 3 α , она будет иметь вид sin 3 α = 3 · sin α — 4 · sin 3 α .

Так же приводится формула косинуса тройного угла:

cos 3 α = cos ( 2 α + α ) = cos 2 α · cos α — sin 2 α · sin α = = ( cos 2 α — sin 2 α ) · cos α — 2 · sin α · cos α · sin α = cos 3 α — 3 · sin 2 α · cos α

При замене sin 2 α на 1 — cos 2 α получим формулу вида cos 3 α = — 3 · cos α + 4 · cos 3 α .

При помощи полученных формул преобразуем формулу тройного угла для тангенса и котангенса тройного угла:

t g 3 α = sin 3 α cos 3 α = 3 · sin α · cos 2 α — sin 3 α cos 3 α — 3 · sin 2 α · cos α = 3 · sin α · cos 2 α — sin 3 α cos 3 α cos 3 α — 3 · sin 2 α · cos α cos 3 α = = 3 · sin α cos α — sin 3 α cos 3 α 1 — 3 · sin 2 α cos 2 α = 3 · t g α — t g 3 α 1 — 3 · t g 2 α ; c t g 3 α = cos 3 α sin 3 α = cos 3 α — 3 · sin 2 α · cos α 3 · sin α · cos 2 α — sin 3 α = cos 3 α — 3 · sin 2 α · cos α sin 3 α 3 · sin α · cos 2 α — sin 3 α sin 3 α = = cos 3 α sin 3 α — 3 · cos α sin α 3 · cos 2 α sin 2 α — 1 = c t g 3 α — 3 · c t g α 3 · c t g 2 α — 1

Чтобы выводить формулы четвертой степени, имеет смысл представить 4 α как 2 · 2 α , тогда имеет место использование формулы двойного угла два раза. Для выводы формулы 5 степени, представляем 5 α в виде 3 α + 2 α , что позволит применить формулы тройного и двойного углов для ее преобразования. Таким же образом делаются преобразования разных степеней тригонометрических функций. Их применение достаточно редкое в тригонометрии.

cos2a, sin2a. Формулы двойного угла. Примеры на ЕГЭ

Примеры решения задач из ЕГЭ на формулы двойного угла

Вычислим \(\cos⁡\frac<5π><6>\) с помощью тригонометрического круга. Сначала найдем \(\frac<5π><6>\) на круге:

Все аргументы разные и что с этим делать не понятно. Однако присмотревшись, замечаем, что \(98^°\)ровно в два раза больше \(49^°\). То есть, имеет смысл разложить синус в числителе по формуле двойного угла.

Одинаковые синусы можно сократить.

Теперь обратите внимание на то, что \(49^°=90^°-41^°\).
Поэтому мы можем заменить \(49^°\) на \(90^°-41^°\).

\((90^°-41^°)\) – это первая четверть, косинус в ней положителен. Значит, знак будет плюс;

\(90^°\)- находится на «вертикали» — функция меняется на кофункцию. \(\cos⁡ (90^°-41^°)=\sin⁡41^°\)

Пример. (Задание из ЕГЭ) Найдите значение выражения \(\sqrt<12>\cos^2⁡\frac<5π><12>-\sqrt<3>\).

С первого взгляда не очевидно, что тут надо делать. Возможно, со второго тоже. И здесь нас выручит золотое правило решения задач по математике: «не знаешь, что делать — делай, что можешь». А тут точно можно преобразовать \(\sqrt<12>\).
\(\sqrt<12>=\sqrt<4\cdot 3>=2\sqrt<3>\).

Теперь можно вынести \(\sqrt<3>\) за скобки.

Вот теперь видно, что перед нами формула косинуса двойного угла.

Сокращаем \(2\) и \(12\).

Теперь применим к косинусу формулу приведения:

\((π-\frac<π><6>)\) – это вторая четверть, косинус в ней отрицателен. Значит, знак будет минус;

\(π\) — находится на «горизонтали» — функция не меняется на кофункцию.

Формулы двойного угла — значения функций, свойства и примеры решений

Способы преобразования

Чтобы понять, как выражаются тригонометрические функции двойных углов, необходимо воспользоваться их записью в виде nα, где n принадлежит натуральному числу. Значение основного выражения отображается математически без скобок. Используя это свойство, можно составить следующее уравнение: sin nα = sin (nα).

Для приведения произведения sin nα х sin nα, используется аналогичное свойство. Выражение можно упростить до 2 (n sin α). Основой тождества является n sin α. В математике используются и другие равенства:

  1. Косинус двойного угла: косинус 2α = косинус2α — синус2α.
  2. Разность косинуса и тангенса двойного угла.
  3. Тангенс минус двойной тангенс.
  4. Котангенс минус тангенс.

В геометрии и алгебре чаще применяются следующие известные формулы: синус2α = cos2α — sin2α, cos2α = 1 − 2·sin2α. Можно разложить производные sin и cos, если угол имеет любой градус. Решение тангенса потребуется, если в основе задачи находится tg2α, при этом значение угла отлично от суммы π4 и π2. Частный случай, когда в задании есть целое число z, а α ≠ π4 + π2·z. Если рассматривать для котангенса ФДУ при любом альфа, ctg2α не определён на промежутке π2. Для косинуса двойного угла характерна тройная запись.

Доказательства равенств

Чтобы подтвердить уравнения на сложение, вычитание и умножение, понадобится подойти к доказательству комплексным способом. Используя формулы синуса с плюсом для углов (α+β) и косинуса ​ для β и α, получится синусα·косинусβ+косинусα·синусβ. Пример для вычитания: соsα ·cosβ-синусα·синусβ.

При вычислении разницы следует придерживаться аналогичного принципа. Результат будет следующим: косинус (α+α) равен двойному значению косинуса минус двойное значение синуса. Формула двойного угла косинуса и синуса доказана. При решении задач из дидактических материалов используются и другие уравнения при положительном и отрицательном значении альфа, при нуле либо половинном π.

Для их доказательства необходимо находить корень из числа z, возводить целое значение в квадрат либо иную степень. Чтобы определиться с ходом решения, необходимо следить за графиком функции:

Сложные действия вычисляются с помощью калькулятора. Если задача состоит из нескольких частей, для нахождения результата потребуется преобразовать первичное уравнение в более простое. Используются следующие равенства:

  • косинус2α=1−2⋅синус2α;
  • косинус 2α=2·косинус2α — 1.

Их можно привести к косинус2α — синус2α. Если заменить единицу суммой квадратов, тогда sin2α + cos2α = 1. Получается, что синус2α + косинус2α = 1. Подставив данные, выходит: 1 − 2·sin2α.

Чтобы доказать ФДУ котангенса, применяется равенство ctg2α = cos2αsin2α. Преобразовав данные, получится для tg2α равенство 2·sinα·cosαcos2α — sin2α. Разделив выражение на cos2α, отличное от нуля, получится, что tgα определен. Другое выражение поделится на sin2α. Значение sin2α ≠ 0 будет иметь смысл при любом α, если ctg2α имеет смысл.

Решение задач

Для убеждения в справедливости 2α для α=30° применяется значение тригонометрических функций для углов. Если α=30°, тогда 2α будет соответствовать 60°. Необходимо проверить значение sin 60° = 2·sin 30°·cos 30°, cos 60° = cos2 30° — sin2 30°. Если подставить данные, получится подробная функция: tg 60°= 2·tg 30°1 — tg2 30° и ctg 60° = ctg230° — 12·ctg 30°.

Так как sin 30° = 12, cos 30° = 32, tg 30° = 33, ctg 30° = 3 и sin 60° = 32, cos 60° = 12, tg 60° = 3, ctg 60° = 33, тогда выводится следующее: 2·sin 30°·cos 30° = 2·12·32 = 32, cos230° — sin230° = (32)2-(12)2 = 12,2·tg 30°1-tg230° = 2·321 — (33) = 3 и ctg230° — 12·ctg 30° = (3)2 − 12·3 = 33.

Задача 1: дан угол, отличный от 2α, например 3π5. Нужно найти его значение. Решение: угол 3π5 необходимо преобразовать. Получается α = 3π5:2 = 3π10. Из результата следует, что ФДУ для косинуса принимает следующий вид: cos3π5 = cos23π10 — sin23π10.

Задача 2: необходимо представить sin2α3 через функции, когда α = 6. Решение: заменить 2α3 = 4·α6. Если подставить данные, получится sin2α3. Выражая через функцию, принимая формулу двойного угла, записывается выражением: sin2α3 = 2·sinα3·cosα3. Используя cosα3, применяя sin2α2, получится результат sin2α3 = 4·sinα6·cos3α6 − 4·sin3α6·cosα6.

Тождества при других значениях

На практике студенты высших учебных заведений математических факультетов встречаются с задачами, для решения которых применяются формулы тройного, четверного и другого угла. В их основе находятся тригонометрические функции. Чтобы их вывести, используются формулы сложения двойного угла: sin3α = sin (2α+α) = 3·sinα·cos2α — sin3α.

При замене cos2α на 1-sin2α формула примет новый вид: sin3α = 3·sinα-4·sin3α. По аналогичной схеме приводится формула косинуса тройного угла: косинус3α = косинус (2α+α) = косинус3α — 3·синус2α·косинусα.

При замене sin2α на 1-cos2α, получится формула вида cos3α = -3·cosα+4·cos3α. С помощью полученных равенств преобразовывается формула тройного угла для тангенса и котангенса: tg3α = sin3αcos3α = ctg3α — 3·ctgα3·ctg2α — 1.

По такой же методике выводятся формулы четвёртой степени. Значение 4α нужно представить в виде 2·2α. Равенство выводится с помощью ФДУ дважды. Для получения равенства пятой степени представляется значение угла 5α в виде 3α+2α.

Такая сумма позволяет использовать формулы двойного и тройного углов с целью преобразования в конечный результат. По аналогичной схеме преобразовываются разные степени тригонометрических функций, но их применяют в тригонометрии редко.

Область применения

Чтобы определить значение тригонометрической функции (ТФ), рассматривается окружность с радиусом в единицу и диаметрами, взаимно перпендикулярными. Для вычислений потребуется отложить от точки, принадлежащей окружности, дуги любых длин. Они будут положительными, если их отложить против часовой стрелки.

Отрицательное значение принимают те, которые размещены по часовой стрелке. Если конец дуги имеет длину f, тогда проекция радиуса на любом диаметре примет значение косинуса дуги. Под аргументом понимается число, которое рассматривается геометрически как f либо радианная мера угла. Если аргумент ТФ взят за угол, тогда его значение выражается и в градусах.

Доказано, что значение острых углов больше нуля, но меньше p/2. Для таких величин ТФ рассматривается как отношение катетов к гипотенузе. Эти элементы принадлежат прямоугольному треугольнику. Название связано с наличием угла в 90 градусов. Для решения задач с тригонометрическими функциями используется и теорема Пифагора, в основе которой находится свойство прямоугольного треугольника: квадрат гипотенузы равен сумме квадратов катетов.

Дуга делит окружность на несколько частей. Углы, размещенные в первой четверти, больше нуля, во второй косинус меньше, но синус больше, в третьей ТФ меньше 0, а в четвёртой получаются значения, противоположные второй. Для построения окружности потребуется циркуль, а для измерения углов транспортир.

Для получения точного чертежа рекомендуется наносить данные на миллиметровую бумагу либо тетрадь в клетку.


источники:

http://cos-cos.ru/ege/zadacha209/368/

http://nauka.club/matematika/formuly-dvoynogo-ugla.html