Уравнение изменения импульса механической системы это

Механическая система и ее центр масс. Уравнение изменения импульса механической системы. Закон сохранения импульса механической системы.

Физика и современное естествознание. Системы отсчёта. Кинематика точки. Кинематика твёрдого тела при вращательном движении.

Физика — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.

Положение тела в пространстве можно определить только по отношению к другим телам.

Система отсчета — абсолютно твердое тело, с которым жестко связана система координат, снабженная часами и используемая для определения положения в пространстве тел и частиц в различные моменты времени.

Наиболее распространенной является прямоугольная декартова система координат.

Кинематика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Вращательное движение твердого тела — движение, когда все точки твердого тела описывают окружность, причем центры всех окружностей лежат на одной прямой, называемой осью вращения.

V=dr/dt, a=dV/dt, ω=dφ/dt, ε=dω/dt;

Инерциальная система отсчёта, динамика материальной точки. Законы Ньютона. Силы.

Инерциальная система отсчета —такая система, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно, т.е. такой системой, в которой выполняется первый закон Ньютона.

Неинерциальной системой отсчета называется система, движущаяся относительно инерциальной системы с ускорением.

Динамика — раздел механики, изучающий движение механических систем под действием сил.

Законы Ньютона:

1) Если на тело не действуют никакие силы или суммы сил равны нулю, то точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока взаимодействие с другими телами не заставит ее изменить это состояние.

2) Элементарный импульс силы равен изменению количества движения тела.

Fdt = mdV + Vdm (если m=const)

dm = 0, Fdt = mdV, следовательно, F = m(dV/dt) = ma.

Другая формулировка: Производная от импульса (количества движения) тела по времени равна по величине действующей силе и совпадает с ней по направлению: F = d(mV)/dt.

3) Действие равно противодействию.

Сила — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Сила как векторная величина характеризуется модулем, направлением и точкой приложения. Сила называется стационарной, если она не изменяется с течением времени, т.е. dF/dt=0.

Дополнение:

Импульсом (или количеством движения) материальной точки (тела) называется векторная величина, численно равная произведению массы материальной точки (тела) на ее скорость и меющая направление скорости: p = mV (единица импульса — 1 (кг*м/с)).

Механическая система и ее центр масс. Уравнение изменения импульса механической системы. Закон сохранения импульса механической системы.

Механическая система — совокупность материальных точек (тел), рассматриваемых как единое целое.

Центр масс механичиской системы — воображаемая точка С, расположение которой характеризует распределение масс в системе.

Центр масс механической системы движется, как материальная точка, в которой сосредоточена вся масса системы и к которой приложены все силы действующие на систему.

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости: .

Закон сохранения импульса механической системы:

В замкнутой системе импульс сохраняется.

Другая формулировка: Суммарный импульс замкнутой системы остается постоянным по модулю и направлению, хотя импульс каждого из тел системы может изменяться.

Рассмотрим механическую систему из N тел, массы и скорости которых соответсвенно равны m1, m2, . mN; V1, V2, . VN.

Запишем второй закон Ньютона для каждого из N тел механической системы:

где Fi — равнодействующая внутренних сил i-того тела системы, F — равнодействующая внешних сил i-того тела системы.

Проведем почленное сложение уравнений: (1)

Рассмотрим левую часть полученного выражения. = =

где = представляет собой суммарный импульс всех тел системы, т.е. импульс системы.

Первый член в правой части выражения (1) представляет собой векторную сумму внутренних сил всех тел системы. По третьему закону Ньютона каждой внутренней силе F’mn соответствует равная ей по модулю и противоположная по направлению сила F’nm, поэтому:

=0.

Выражение преобразуется к виду:

=

Производная от импульса системы по времени равна сумме внешних сил, действующих на систему.

Если сумма (векторная) внешних сил равна нулю, или внешние силы отсутствуют, то:

, т.е. импульс сохраняется.

Дополнение:

Импульсом (или количеством движения) материальной точки (тела) называется векторная величина, численно равная произведению массы материальной точки (тела) на ее скорость имеющая направление скорости: p = mV (единица импульса — 1 (кг*м/с)).

Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

Теория к заданию 3 из ЕГЭ по физике

Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

где, $<υ_1>↖<→>$ и $<υ_2>↖<→>$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

Здесь $↖<→>—↖<→>=∆p↖<→>$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

Выражение $∆p↖<→>=F↖<→>∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы. Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖<→>=F↖<→>∆t$ называется уравнением движения тела. Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_<12>$ и $F_<21>$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы $↖<→>$ и $↖<→>$. Для каждого тела можно записать уравнение $∆p↖<→>=F↖<→>∆t$. Сложив левые и правые части этих уравнений, получим:

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — $<∆p_<сист>>↖<→>$.С учетом этого равенство $<∆p_1>↖<→>+<∆p_2>↖<→>=(↖<→>+↖<→>)∆t$ можно записать:

где $F↖<→>$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Закон сохранения импульса

Из уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_

υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_<газ>·υ_<газ>$ выброшенных газов:

Отсюда следует, что скорость ракеты

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=(>/)·υ_<газ>$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

где $F$ — сила, действующая на тело, $∆r↖<→>$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖<→>$ и $∆r↖<→>$.

Работа — величина скалярная. Если $α 0$, а если $90° А_п$, КПД всегда меньше $1$ (или $

Законы изменения (сохранения) импульса и энергии для системы материальных точек

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На прошлом уроке мы вывели второй закон Ньютона для систем материальных точек. На этом уроке мы узнаем, что одна из форм записи этого закона является законом сохранения импульса для систем материальных точек. Также введём понятие энергии системы материальных точек и рассмотрим закон сохранения (изменения) энергии такой системы.


источники:

http://examer.ru/ege_po_fizike/teoriya/zakon_sohraneniya_impulsa

http://interneturok.ru/lesson/physics/10-klass/bmehanika-sistemy-telb/zakony-izmeneniya-sohraneniya-impulsa-i-energii-dlya-sistemy-materialnyh-tochek