Уравнение изменения внутренней энергии в адиабатическом процессе

II. Молекулярная физика

Тестирование онлайн

Первый закон термодинамики

Первый закон термодинамики — есть закон сохранения энергии: при любых физических взаимодействиях энергия не возникает и не исчезает, а только передается от одних тел другим или превращается из одной формы в другую.

Общая форма закона сохранения и превращения энергии имеет вид

Но изучая тепловые процессы, мы будем рассматривать формулу

Согласно первому закону термодинамики, изменение внутренней энергии термодинамической системы при переходе из одного состояние в другое равно сумме работы, выполненной внешними силами, и количества теплоты, переданной системе извне

Сформулировать первый закон термодинамики можно иначе: количество теплоты, получаемое системой извне при ее переходе из одного состояния в другое, расходуется на повышение внутренней энергии системы и на работу, которую она выполняет против внешних сил

Например, вы кипятите чайник с водой. Количество тепла расходуется на их нагревание (увеличивается энергия частиц, то есть внутренняя энергия системы), а затем происходит приподнимание крышки — это работа, которую выполняет система.

Внешняя работа над системой равна работе системы, но с противоположным знаком

Адиабатический (адиабатный) процесс

Процесс при тепловой изоляции системы от окружающей среды, то есть

Изменение внутренней энергии происходит только за счет работы внешних сил. Или совершаемая системой работа происходит за счет убыли внутренней энергии.

Практически все реальные процессы происходят с теплообменом: адиабатические процессы — это редкое исключение.

Первый закон термодинамики для изопроцессов

При изотермическом процессе температура не изменяется, значит не изменяется внутренняя энергия

Первый закон принимает вид

Все количество теплоты, которую получает газ расходуется на выполнение им работы против внешних сил. Или, если газ сжимается, при этом не изменяется температура, работу выполняют внешние силы, а газ отдает некоторое количество теплоты в окружающую среду.

При изохорном процессе объем не изменяется, значит работа нулевая

Первый закон термодинамики принимает вид

В этом случае

Если газ изохорно охлаждается, его внутренняя энергия уменьшается, и он отдает теплоту в окружающую среду.

При изобарном процессе первый закон термодинамики имеет общий вид

Здесь справедливы формулы

Адиабатный процесс. Изопроцессы в термодинамике

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы будем работать с уже известными нам физическими понятиями, но в несколько иной области применения. А именно с изопроцессами в термодинамике. Мы рассмотрим, какие изменения в первый закон термодинамики (закон сохранения энергии в тепловых процессах) внесут протекания этих самых процессов при неизменном макроскопическом параметре газа. Также мы рассмотрим новый, ранее неизвестный процесс – адиабатный.

Адиабатический процесс | Все его важные концепции и графические кривые

Тема обсуждения: адиабатический процесс.

  • Определение адиабатического процесса
  • Примеры адиабатических процессов
  • Формула адиабатического процесса
  • Вывод адиабатического процесса
  • Выполненная работа адиабатического процесса
  • Обратимый адиабатический процесс и Необратимыйадиабатический процесс
  • Адиабатический график

Определение адиабатического процесса

Соблюдая первый закон термодинамики, процесс, происходящий при расширении или сжатии, когда нет теплообмена от системы к окружающей среде, может быть известен как адиабатический процесс. В отличие от изотермического процесса, адиабатический процесс передает энергию окружающей среде в виде работы. Это может быть как обратимый, так и необратимый процесс.

В действительности, идеально адиабатический процесс никогда не может быть получен, поскольку ни один физический процесс не может происходить самопроизвольно, а система не может быть идеально изолирована.

Следуя первому закону термодинамики, который гласит, что когда энергия (как работа, тепло или материя) переходит в систему или из нее, внутренняя энергия системы изменяется в соответствии с законом сохранения энергии, где E можно обозначить как внутренняя энергия, а Q — это тепло, добавленное к системе, а W — проделанная работа.

ΔE=QW

Для адиабатического процесса, в котором нет теплообмена,

ΔE= —W

Условия, необходимые для протекания адиабатического процесса:

  • Система должна быть полностью изолирована от окружающей среды.
  • Чтобы передача тепла происходила за достаточное время, процесс должен выполняться быстро.

Адиабатический процесс Пример

  1. Процесс расширения в двигателе внутреннего сгорания среди горячих газов.
  2. Квантово-механический аналог осциллятора, классически известного как квантовый гармонический осциллятор.
  3. Сжиженные газы в системе охлаждения.
  4. Воздух, выпущенный из пневматической шины, является наиболее важным и частым случаем адиабатического процесса.
  5. Лед, хранящийся в морозильной камере, следует принципам, согласно которым тепло не передается в окружающую среду и обратно.
  6. Турбины, использующие тепло в качестве среды для создания работы, считаются отличным примером, поскольку они снижают эффективность системы, поскольку тепло теряется в окружающую среду.

Формула адиабатического процесса

Выражение адиабатического процесса в математических терминах может быть дано следующим образом:

ΔQ = 0

ΔU = -W, (так как в системе отсутствует тепловой поток)

Рассмотрим систему, в которой выполняется исключение теплового и рабочего взаимодействий в стационарном адиабатическом процессе. Единственные энергетические взаимодействия — это граничная работа системы в ее окружении.

Идеальный газ

Количество тепловой энергии на единицу температуры, недоступной для выполнения определенной работы, можно определить как энтропию системы. Спекулятивный газ, который представляет собой беспорядочное движение точечных частиц, подверженных межчастичным молекулярным взаимодействиям, идеален.

Молярная форма формулы идеального газа определяется следующим образом:

Уравнение адиабатического процесса можно обозначить как:

PVY = постоянный

Для обратимого адиабатического процесса

  • P 1-Y T Y = постоянная,
  • VT F / 2 = постоянная,
  • TV Y-1 = константа. (T = абсолютная температура)

Этот процесс также известен как изэнтропический процесс, идеализированный термодинамический процесс, включающий передачу работы без трения и адиабатический. В этом обратимом процессе нет передачи тепла или работы.

Вывод адиабатического процесса

Изменение внутренней энергии dU в системе сделать работу dВт плюс добавленное тепло dQ с ним можно связать первый закон термодинамики, с помощью которого можно вывести адиабатический процесс.

Добавление тепла увеличивает количество энергии U определение удельной теплоемкости как количества тепла, добавляемого на единицу повышения температуры на 1 моль вещества.

(n — количество молей), Следовательно:

Получено из закон идеального газа,

Уравнение слияния 1 и 2,

Для постоянного давления Cp, добавляется тепло и,

γ — это удельная теплоемкость

Используя концепции интеграции и дифференциации, мы пришли к следующему:

Это уравнение, приведенное выше, становится реальным для данного идеального газа, который содержит адиабатический процесс.

Адиабатический процесс Работа выполнена.

Для давления P и площадь поперечного сечения A перемещение на небольшое расстояние dx, действующая сила будет определяться следующим образом:

А проделанную работу в системе можно записать так:

Чистая работа, произведенная для расширения газа из объема газа Vi к Vf (от начального до финального) будут представлены как

W = площадь ABDC от графика, построенного как имеет место адиабатический процесс. Условия, которые необходимо соблюдать, связаны с примером совершенно непроводящего поршневого цилиндра с одной граммовой молекулой идеального газа. Емкость баллона должна быть изготовлена ​​из изоляционного материала, а кривая на графике должна быть более резкой.

Принимая во внимание, что в аналитическом методе для вывода работы, выполненной в системе, будет следующее:

Изначально для адиабатического изменения можно предположить:

Который может быть,

Из (1),

Принимая T1 и т2 как начальная и конечная температуры газа соответственно,

Используя это в уравнении (2),

Тепло, необходимое в процессе расширения для выполнения работы:

Поскольку R — универсальная газовая постоянная, и во время адиабатического расширения совершаемая работа прямо пропорциональна снижению температуры, в то время как работа, совершаемая во время адиабатического сжатия, отрицательна.

Это можно представить как работа, выполненная в адиабатическом процессе.

И тепло, выделяемое во время процесса:

Адиабатический график

Математическое представление кривой адиабатического расширения представлено следующим образом:

P, V, T — давление, объем и температура процесса. Рассматривая начальные условия системы как P1, V1, и т1, также определяя финальную стадию как P2, V2, и т2 соответственно, графическая диаграмма PV построена по существу для движения поршневого цилиндра, адиабатически нагретого от начального до конечного состояния для XNUMX кг воздуха.

Адиабатическая энтропия, адиабатическое сжатие и расширение

Газ, которому позволено свободно расширяться без передачи ему внешней энергии от более высокого давления к более низкому, будет по существу охлаждаться по закону адиабатического расширения и сжатия. Точно так же газ нагреется, если его сжать с более низкой температуры до более значительной температуры без передачи энергии веществу.

  • Посылка воздуха расширится, если давление окружающего воздуха уменьшится.
  • На больших высотах наблюдается снижение температуры из-за уменьшения давления, поскольку они прямо пропорциональны в случае этого процесса.
  • Энергия может использоваться либо для работы по расширению, либо для поддержания температуры процесса, но не для того и другого одновременно.

Обратимый адиабатический процесс

Процесс без трения, в котором энтропия системы остается постоянной, получил название обратимого или обратимого. изоэнтропический процесс. Это означает, что изменение энтропии постоянно. Внутренняя энергия эквивалентна работе, совершаемой в процессе расширения.

Поскольку нет теплопередачи,

Которое значит что,

Примеры обратимого изоэнтропического процесса можно найти в газовые турбины.

Необратимый адиабатический процесс

Как следует из названия, процесс рассеяния внутреннего трения, приводящий к изменению энтропии системы во время расширения газов, является необратимым адиабатическим процессом.

Обычно это означает, что энтропия увеличивается по мере развития процесса, который не может быть выполнен в равновесии и не может быть отслежен до исходного состояния.


источники:

http://interneturok.ru/lesson/physics/10-klass/osnovy-termodinamiki/adiabatnyy-protsess-izoprotsessy-v-termodinamike

http://ru.lambdageeks.com/adiabatic-process/