Уравнение изохоры для идеального газа

Уравнение изохоры для идеального газа

Законы идеальных газов
В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс. Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V. Поведение газа при этом изохорическом процессе подчиняется закону Шарля:

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV-диаграмме называется изохорой. Полезно знать график изохорического процесса на РТ— и VT-диаграммах (рис. 1.6). Уравнение изохоры:

(1.4.1)
(1.4.2)

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р. Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака:

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT-диаграмме называется изобарой. Полезно знать графики изобарического процесса на РV— и РT-диаграммах (рис. 1.8).

.(1.4.3)
(1.4.4)

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV-диаграмме называется изотермой. Полезно знать графики изотермического процесса на VT— и РT-диаграммах (рис. 1.10).

(1.4.5)

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится NA=6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

(1.4.6)

При , давление смеси газов:

(1.4.7)

В соответствии с законами Бойля – Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа

Уравнение состояния идеального газа. Изопроцессы

Соотношение p = n k T – это формула, связывающая значение давления газа с его температурой и концентрацией молекул на единицу объема.

Они взаимодействуют со стенками сосуда посредствам упругих соударений. Данное выражение можно записать иначе, учитывая параметрические состояния объема V , давления p , температуры T и количества вещества ν . Применим неравенства:

n = N V = ν N А V = m M N A V .

Значением N является количество молекул данного сосуда, N А – постоянной Авогадро, m – массой газа в емкости, М – молярной массой газа. Исходя из этого, формула примет вид:

p V = ν N А k T = m M N А k T .

Произведение постоянной Авогадро N А на постоянную Больцмана k называют универсальной газовой постоянной и обозначают R .

По системе С И имеет значение R = 8 , 31 Д ж / м о л ь · К .

Соотношение p V = ν R T = m M R T получило название уравнения состояния идеального газа.

Один моль газа обозначается p V = R T .

При температуре T н = 273 , 15 К ( 0 ° C ) и давлении ρ н = 1 а т м = 1 , 013 · 10 5 П а говорят о нормальных условиях состояния газа.

Из уравнения видно, что один моль газа при нормальных условиях занимает один и тот же объем, равный v 0 = 0 , 0224 м 3 / м о л ь = 22 , 4 д м 3 / м о л ь . Выражение получило название закона Авогадро.

Если имеется смесь невзаимодействующих газов, то формулу запишем как:

p V = ν 1 + ν 2 + ν 3 + . . . R T ,

где ν 1 , v 2 , v 3 обозначает количество вещества каждого из них.

Еще в ХХ веке Б. Клапейрон получил уравнение, показывающее связь между давлением и температурой:

p V = ν R T = m M R T .

Впоследствии оно было записано Д.И. Менделеевым. Позже его назвали уравнением Клапейрона-Менделеева.

Задолго до получения уравнения состояния идеального газа на основе молекулярно-кинетической теории поведения газов изучались в различных условиях экспериментально. То есть уравнение p V = ν R T = m M R T служит обобщением всех опытных фактов.

Газ принимает участие в процессах с постоянно изменяющимися параметрами состояния: ( p , V и T ).

При протекании процессов медленно, система находится в состоянии, близком к равновесному. Процесс получил название квазистатического.

Соотнеся с происхождением процессов в нашем времени, то его протекания нельзя считать медленными.

Обычное время для разрежения и сжатия газа сотни раз в секунду. Это рассматривается как квазистатический процесс. Они изображаются с помощью диаграммы состояний параметров, где каждая из точек показывает равновесное состояние.

При неизменном одном параметре из ( p , V или T ) процесс принято называть изопроцессом.

Объединенный газовый закон и изопроцессы

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Объединенный газовый закон был открыт экспериментально. Он также является следствием основного уравнения состояния идеального газа. Согласно ему:

При постоянной массе газа и его неизменной молярной массе отношение произведения давления на объем к его абсолютной температуре остается величиной постоянной:

p V T . . = c o n s t и л и p 1 V 1 T 1 . . = p 2 V 2 T 2 .

Объединенный газовый закон применительно к изопроцессам

Объединенный газовый закон объединяет три независимых газовых закона: Бойля — Мариотта, Шарля и Гей-Люссака. Газовые законы действуют в частных случаях — изопроцессах.

Изопроцессы — термодинамические процессы, во время которых количество вещества и один из параметров состояния: давление, объём, температура или энтропия — остаётся неизменным.

Изотермический процесс. Закон Бойля — Мариотта.

Изотермический процесс — термодинамический процесс, происходящий в системе при постоянной температуре и массе:

Для изотермического процесса действует закон Бойля — Мариотта:

Закон Бойля — Мариотта

Для газа данной массы произведение газа на его объем постоянно, если температура газа не меняется.

Изохорный процесс. Закон Шарля.

Изохорный процесс — термодинамический процесс, происходящий в системе при постоянном объеме и массе:

Для изохорного процесса действует закон Шарля:

Для газа данной массы отношение давления к температуре постоянно, если объем не меняется.

p T . . = c o n s t ( p 1 T 1 . . = p 2 T 2 . . )

Изобарный процесс. Закон Гей-Люссака.

Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении и массе:

Для газа данной массы отношение объема к температуре постоянно, если давление газа не меняется.

V T . . = c o n s t ( V 1 T 1 . . = V 2 T 2 . . )

Пример №1. Идеальный газ изобарно нагревают так, что его температура изменяется на ∆T = 240 К, а давление — в 1,6 раза. Масса газа постоянна. Найдите начальную температуру газа по шкале Кельвина.

Так как газ нагревают, то:

Запишем закон Шарля применительно к данному случаю:

p T 1 . . = 1 , 6 p 240 + T 1 . .

Сделаем некоторые преобразования и вычислим начальную температуру:

p T 1 . . = 1 , 6 p 240 + T 1 . .

240 + T 1 = 1 , 6 T 1

T 1 = 240 0 , 6 . . = 400 ( К )

Подсказки к задачам на газовые законы

Газ под невесомым поршнем:

p — давление газа;

pатм — давление, оказываемое на газ со стороны поршня.

На невесомый поршень действует сила:

p = p а т м + F S . .

F — сила, действующая на поршень;

S — площадь поршня.

На невесомый поршень поставили груз. В данном случае на поршень дополнительно будет действовать сила тяжести:

p = p а т м + F т я ж S . . = p а т м + M g S . .

Fтяж — сила тяжести, действующая на поршень со стороны груза;

g — ускорение свободного падения.

Газ под массивным поршнем. В данном случае на него дополнительно будет действовать сила тяжести поршня:

p = p а т м + m g S . .

m — масса поршня.

На массивный поршень поставили груз. В данном случае на поршень дополнительно будут действовать силы тяжести со стороны поршня и груза:

p = p а т м + M g S . . + m g S . .

На массивный поршень действует сила. В данном случае газ сдавливается как атмосферным давлением, так и силой тяжести поршня, а также силой, которая на него действует:

p = p а т м + m g S . . + F S . .

Газ, находящийся в цилиндре под массивным поршнем, находится в лифте, ускорение которого направлено вверх. Когда ускорение движения лифта противоположно направлено ускорению свободного падения, вес тел увеличивается. Поэтому:

p = p а т м + m g S . . + m a S . .

a — модуль ускорения, с которым движется лифт.

Газ, находящийся в цилиндре под массивным поршнем, находится в лифте, ускорение которого направлено вниз. Когда ускорение движения лифта направлено в сторону вектора ускорения свободного падения, вес тел уменьшается. Поэтому:

p = p а т м + m g S . . − m a S . .

«Пузырек у поверхности воды» — на пузырек действует только атмосферное давоение:

«Пузырек на глубине» — на пузырек действует атмосферное давление и давление столба жидкости:

ρ — плотность жидкости; h — глубина, на которой находится пузырек.

Газ, находящийся в горизонтальной пробирке, отделен от атмосферы столбиком ртути. Объем газа можно вычислить, используя параметры пробирки:

V1— объем газа; l1 — длина части пробирки, которую занимает газ; S — площадь поперечного сечения пробирки. Давление газа равно атмосферному давлению:

Пробирку поворачивают открытым концом вверх. В этом случае кроме атмосферного давления на газ давит давление со стороны ртути:

Объем газа можно вычислить, используя параметры пробирки:

Пробирку поворачивают открытым концом вниз. В этом случае сумма давлений газа и ртути в пробирке равна атмосферному давлению. Отсюда давление газа равно:

Объем газа можно вычислить, используя параметры пробирки:

Шар или понтон поднимается вверх в воздухе или жидкостиАрхимедова сила больше силы тяжести:

Пример №2. Поршень площадью 10 см 2 массой 5 кг может без трения перемещаться в вертикальном цилиндрическом сосуде, обеспечивая при этом герметичность. Сосуд с поршнем, заполненный газом, покоится на полу неподвижного лифта при атмосферном давлении 100 кПа, при этом расстояние от нижнего края поршня до дна сосуда 20 см. Каким станет это расстояние, когда лифт поедет вверх с ускорением, равным 2 м/с 2 ? Изменение температуры газа не учитывать.

10 см 2 = 10 –3 м 2

100 кПа = 10 5 Па

Составим уравнения для 1 и 2 случая. Когда лифт находится в покое, давление газа равно сумме атмосферного давления и давления, оказываемое массивным поршнем:

p 1 = p а т м + m g S . .

Когда лифт начал двигаться, появилось дополнительное давление, связанное с увеличением веса поршня при ускоренном движении вверх:

p 2 = p а т м + m g S . . + m a S . .

Так как изменением температуры можно пренебречь, можно считать, что это процесс изотермический. Следовательно:

Объемы в 1 и 2 случае будут определяться формулами:

h1 — расстояние от нижнего края поршня до дна сосуда в первом случае. h2 — та же самая величина, но во втором случае (искомая величина).

Запишем закон Бойля — Мариотта для обоих случаев с учетом объемов:

p 1 V 1 = S h 1 ( p а т м + m g S . . )

p 2 V 2 = S h 2 ( p а т м + m g S . . + m a S . . )

Так как это изотермический процесс, правые части уравнений можно приравнять:

S h 1 ( p а т м + m g S . . ) = S h 2 ( p а т м + m g S . . + m a S . . )

Графики изопроцессов

Изопроцессы можно изобразить графически в координатах (p;V), (V;T) и (p;T). Рассмотрим все виды графиком для каждого из процессов.

ИзопроцессГрафик в координатах (p;V)График в координатах (V;T)График в координатах (p;T)
Изотермический (график — изотерма)

Изотерма в координатах (p;V) — гипербола. Чем ближе изотерма к началу координат и осям, тем меньшей температуре она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Изотерма в координатах (V;T) — прямая, перпендикулярная оси OT и параллельная оси OV. Чем ближе изотерма к оси OV, тем меньшей температуре она соответствует.

С увеличением объема давление уменьшается.

Изотерма в координатах (p;T) — прямая, перпендикулярная оси OT и параллельная оси Op. Чем ближе изотерма к оси Op, тем меньшей температуре она соответствует.

С увеличением давления объем уменьшается.

Изохорный (график — изохора)

Изохора в координатах (p;V) — прямая, перпендикулярная оси OV и параллельная оси Op. Чем ближе изохора к оси Op, тем меньшему объему она соответствует.

С увеличением давления увеличивается температура.

Изохора в координатах (V;T) — прямая, перпендикулярная оси OV и параллельная оси OT. Чем ближе изохора к оси OT, тем меньшему объему она соответствует.

С увеличением температуры увеличивается давление.

Изохора в координатах (p;T) — прямая, исходящая из начала координат. Чем меньше угол наклона изохоры к оси OT, тем меньшему объему она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Изобарный (график — изобара)

Изобара в координатах (p;V) — прямая, перпендикулярная оси Op и параллельная оси OV. Чем ближе изобара к оси OV, тем меньшему давлению она соответствует.

С увеличением объема температура растет.

Изобара в координатах (V;T) — прямая, исходящая из начала координат. Чем меньше угол наклона изобары к оси OT, тем меньшему давлению она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Изобара в координатах (p;T) — прямая, перпендикулярная оси Op и параллельная оси OT. Чем ближе изобара к оси OT, тем меньшему давлению она соответствует.

С увеличением температуры объем растет.

Пример №3. На рисунке представлен график циклического процесса. Вычертить его в координатах (p;T).

Определим характер изменения величин:

  • Процесс 1–2. Гипербола — это изотерма. Следовательно T12 = const. В координатах (p;T) изотерма будет выглядеть как прямая, перпендикулярная оси OT.
  • Процесс 2–3. Прямая линия, перпендикулярная оси Op — это изобара. Следовательно p23 = const. В координатах (p;T) изобара будет выглядеть как прямая, перпендикулярная оси Op.
  • Процесс 3–1. Прямая линия, перпендикулярная оси OV — это изохора. Следовательно V31 = const. В координатах (p;T) изохора будет выглядеть как прямая, выходящая из начала координат.

Теперь, зная, какими будут графики всех величин в координатах (p;T), можно построить сам график. Он примет следующий

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

1 моль идеального газа изохорно охлаждают на 200 К, при этом его давление уменьшается в 2 раза. Какова первоначальная абсолютная температура газа?


источники:

http://zaochnik.com/spravochnik/fizika/molekuljarno-kineticheskaja-teorija/uravnenie-sostojanija-idealnogo-gaza-izoprotsessy/

http://spadilo.ru/obedinennyj-gazovyj-zakon-i-izoprocessy/