Уравнение изотермы химической реакции для изохорного потенциала реакции

Уравнение изотермы химической реакции для изохорного потенциала реакции

ЛЕКЦИЯ № 5. Химическое равновесие

1. Понятие химического равновесия. Закон действующих масс

При протекании химической реакции через некоторое время устанавливается химическое равновесие. Существует два признака химического равновесия: кинетический, термодинамический. В кинетическом – ?пр = ?обр, в термодинамическом – характеризует химическую реакцию при условиях P, t – const (?G = 0); при условиях V, Т – const (?F = 0).

Химический потенциал – функция, которая характеризует состояние i-го компонента при определенных внешних условиях.

где n1 число молей i-го компонента.

Если к бесконечно большому количеству раствора прибавить определенное количество какого-нибудь компонента, то химический потенциал системы определяется изменением изобарного потенциала при изобарных условиях или изменением изохорного потенциала при изохорных условиях.

Химический потенциал зависит от концентрации данного компонента

где Рi– парциальное давление – вклад каждого компонента в общее давление или давление, которое компонент имел бы, если бы находился в смеси.

Парциальное давление – элементарная функция (можно складывать). Пример (O2, N2, H2) – их общее давление

?0 значение химического потенциала при стандартных условиях.

Химический потенциал характеризует способность данного компонента выходить из данной фазы путем испарения, растворения, кристаллизации и т. д. Переход этот происходит произвольно.

В результате химического равновесия скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается.

Концентрации, которые соответствуют химическому равновесию, называются равновесными концентрациями. Связь между равновесными концентрациями устанавливается законом действующих масс (ЗДМ). Этот закон в 1867 г. вывели К. М. Гульберг и П. Вааге.

Кинетический вывод ЗДМ



f – фугитивность – парциальное давление для реальных газов. Возникает вопрос, будут ли равняться Кpи Кс.

Кpи Кc отличаются на RT ?vi в сумме стехиометрических коэффициентов.

если ?vi = 0, то Kp = Kc. ?vi = 1 + 1 – 1 – 1 =0 – когда стехиометрический коэффициент = 1.

2. Уравнение изотермы химической реакции

Если реакция протекает обратимо, то ?G= 0.

Если реакция протекает необратимо, то ?G? 0 и можно рассчитать изменение ?G.

где ? – пробег реакции – величина, которая показывает, сколько молей изменилось в ходе реакции. I сп – характеризует равновесное и неравновесное состояние реакции, II сп – характеризует только неравновесные состояния.

это уравнение изотермы химической реакции.

С помощью уравнения изотермы химической реакции можно судить о направлении протекания реакции.

3. Уравнения изохоры, изобары химической реакции

Зависимость К от температуры


По ним судят о направлении протекания реакции:

4. Расчет KP (метод Темкина-Шварцмана)


термодинамический метод расчета Kp.


Пример. Расчет Kp для реакции PbS04 распадается на РbО и S03.

Результаты вычислений занесены в таблицу 2.


5. Расчет равновесного состава химического равновесия

Равновесный состав можно рассчитать только для газовой системы

Исходная концентрация всех компонентов

Изменение каждого компонента по числу молей (или стехиометрическому коэффициенту):

??– (пробег реакции) – химическая переменная.

Она показывает изменение количества вещества по числу молей. Если реакция не началась, то ?? = 0. Если количество исходных веществ превратилось в такое же количество продуктов реакции, то ?? = 1.

Рассчитать равновесный состав по третьему компоненту при условии, что А = а моль/л; В = в моль/л.

Рассчитываем по 4 компоненту:

Газообразные вещества реагируют по уравнению:

Найти парциальное давление каждого компонента.

Вещества А и В превращаются в С в количестве Х. Исходные вещества А= 2 моль, В= 1 моль.

Для того, чтобы найти парциальное давление, мы должны Роб умножить на мольную долю. Мольная доля определяется отношением числа молей каждого компонента, отнесенного к общему числу молей всех компонентов.

где En – общее число молей, участвующих в этой газовой смеси.

где РА парциальное давление.

Уравнение изотермы химической реакции

Для решения принципиальной возможности или невозможности того или иного физико-химического процесса необходимо, прежде всего, установить, является ли интересующая нас система при данных условиях (при данных температуре, давлении, концентрации) равновесной или неравновесной. Если система неравновесна, следует выяснить, по какую сторону от равновесия находится система и насколько она удалена от него.

В изобарно-изотермических процессах состояние равновесия или степень отклонения от него определяют по знаку и величине изменения изобарного потенциала ΔG, которое рассчитывают по уравнению изотермы химической реакции или уравнению Вант — Гоффа:

, (39)

где — парциальные давления компонентов, относящиеся к произвольно заданному составу реакционной системы, то есть фактические парциальные давления в данном состоянии; ΔG =G2G1 – изменение изобарного потенциала при определенной температуре и произвольно выбранных концентрациях реагентов.

Для изохорно-изотермических процессов состояние равновесия или степень отклонения от него определяют по знаку и величине изменения изохорного потенциала ΔF. Уравнение изотермы запишем, используя концентрации веществ:

. (40)

Так как в стандартном состоянии активности веществ принимают равными единице аi=1, то в общем случае стандартное изменение изобарного потенциала:

(41)

и . (42)

Знак ΔG показывает, по какую сторону от равновесия находится система в данном состоянии, и по нему можно судить о направлении процесса.

Если ΔG G2. Процессы самопроизвольно идут только в сторону меньшего значения потенциала, и реакция будет протекать только вправо (прямое течение). Если ΔG >0, то в системе возможно обратное течение процесса – справа налево согласно записи уравнения химической реакции.

Абсолютная величина ‌│ΔG‌│ тем больше, чем сильнее отличаются фактические и равновесные концентрации реагентов. Абсолютная величина │ΔG‌│ является мерой отклонения рассматриваемой системы от равновесия.

Эта же величина является мерой химического сродства, то есть способности веществ вступать между собой в химическое взаимодействие при определённых температуре, давлении и заданном соотношении концентрации реагентов.

Химическое сродство характеризует только стремление к взаимодействию, основанному на разности потенциалов, но ничего не говорит о возможности реализации процессов, об их скорости и пути протекания.

Для сопоставления химического сродства элементов в различных реакциях принимают, что все реагенты находятся в стандартном состоянии при данной температуре, то есть газы считаются идеальными и каждый из них находиться под давлением 1,01·10 5 Па (1атм), а конденсированные вещества в чистом виде берутся в их реальном устойчивом состоянии при той же температуре и при общем давлении 1,01·10 5 Па (1 атм).

Выбор стандартного состояния может быть произвольным. Важно, что при этом активности веществ принимаются равными единице аi=1.

Зная изменение изобарного потенциала процесса в стандартных условиях, можно определить константу равновесия химической реакции из уравнения (41):

, (43)

где — константа равновесия химической реакции, — абсолютная температура, — универсальная газовая постоянная.

Если и R выражены в Дж/(моль·К), то уравнение имеет вид

. (44)

На практике часто используется уравнение, в котором изменение стандартного изобарного потенциала реакции выражено через изменения энтальпии и энтропии (29):

. (45)

В состоянии равновесия , . Если и >>1 – реакция прямая. Если и

Дата добавления: 2016-02-04 ; просмотров: 932 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнение изотермы химической реакции для изохорного потенциала реакции

Большинство химических реакций протекают одновременно в двух направлениях: в сторону образования продуктов реакции (прямая реакция) и в сторону разложения последних (обратная реакция). Вследствие химической обратимости реакции не доходят до конца. Скорость прямой реакции уменьшается, а скорость обратной, напротив, возрастает. Когда эти скорости выравниваются наступает состояние химического равновесия.

Так как химически обратимые реакции до перехода в равновесное состояние протекают с конечными скоростями, то с точки зрения термодинамики они не обратимы. Однако можно мысленно представить, что эти реакции идут бесконечно медленно через смежные равновесные состояния. Тогда к ним можно применить общие условия термодинамического равновесия.

Для гомогенных обратимых реакций экспериментально Гульбергом и Ваге был установлен закон действующих масс. При постоянной температуре отношение произведения равновесных концентраций (или парциальных давлений) продуктов реакции к произведению равновесных концентраций (или парциальных равновесий) исходных веществ есть величина постоянная.

Этот экспериментально установленный закон может быть получен методом термодинамических потенциалов. Рассмотрим реакцию в газовой фазе:

аА(г) + b В ↔ сС + dD

Когда система достигает термодинамического равновесия, то термодинамический потенциал при фиксированных естественных переменных достигает минимума. Равновесие, таким образом, можно охарактеризовать выражением химических потенциалов, когда потенциалы продуктов реакции сравняются с потенциалами исходных веществ:

с μ ( с ) + d μ (D) – a μ (a) — b μ (b) = 0 (6 – 1)

Если естественными переменными являются p и T , то = , а = V

Отсюда для систем, подчиняющихся закону идеальных газов, можно получить выражения для μ i

μ i = μ i ° + RTlnCi (6 – 2)

где μ i ° — стандартный химический потенциал.

Подставляется (6 – 2) в (6 – 1) и перенося постоянные величины в левую часть, получаем

сμ C ° + d μ D ° — a μ A ° — b μ B ° = — RTln (6 – 3)

Поскольку в левой части выражение не зависит от концентраций, то выражение под логарифмом является постоянной величиной при постоянной температуре:

Для идеального газа парциальные давления пропорциональны концентрациям, поэтому константа равновесия может быть всегда выражена через равновесные парциальные давления:

Аналогично может быть записано выражение через мольные доли:

Для идеальных газов эти константы связаны между собой соотношением:

где

Следует обратить внимание, что в полученных соотношениях только KN зависит от общего давления. Она позволяет нам оценивать сдвиг равновесия в газовых реакциях при изменении общего давления. Следует иметь в виду, что давление в этих выражениях складывается из парциальных давлений компонентов системы и не учитывает влияние инертных газов, если они присутствуют в реакционной смеси. Естественно инертный газ «разбавляет» компоненты реакционной смеси и поэтому влияет на KN .

Из уравнения (6 – 3) вытекает связь константы равновесия с ∆ rG °:

(6 – 4)

Это уравнение было впервые получено Вант – Гофором методом циклов и получило название уравнения изотермической химической реакции. Очевидно, в этом уравнении ∆ rGT ° относится к этой температуре, при которой определена Кр. Уравнение изотермической химической реакции позволяет определить константу равновесия при заданных условиях не прибегая к исследованию равновесия. Величина ∆ rGT ° может быть рассчитана на основе термических констант для индивидуальных веществ.

Если заданы концентрации (парциальные давления) отличные от равновесных, то можно записать более общий вид уравнения изотермической химической реакции:

Это выражение позволяет определить направление самопроизвольного процесса.

Уравнение изотермы химической реакции позволяет получить выражение для температурной зависимости константы равновесия.

Запишем уравнение Гиббса – Гельмгольца:

Подставим выражение для из (6 – 4)

(6 — 5)

Дифференцируем уравнение (6 – 5)


(6 — 5´)

Из уравнения (6 — 5´) получаем уравнение изобары химической реакции:

(6 – 6)

Если проинтегрировать уравнение (6 – 6) в предположении, что ∆ rHT ° не зависит от температуры, то получим уравнение:

где С – константа интегрирования.

Уравнение (6 – 7) хорошо выполняется в узких интервалах температур и позволяет определить ∆ rGT °.

Для широких интервалов температур ln K р представляют в виде степенных рядов или других аналитических формах:

Такие выражения позволяют рассчитать все термодинамические функции для процессов, для которых данные зависимости получены.

Выражения для термодинамических потенциалов, полученные для идеального газа. Для реальных газов, а особенно для газовых растворов возникают затруднения. Это связано с тем, что расчет концентраций и давлений должен быть проведен исходя из уравнения состояния. Однако для реальных систем единое достаточно простое уравнение состояния получить не удалось.

В связи с этим в термодинамике реальных систем применяется эмпирический метод, предложенный Льюисом. Льюис предложил в уравнениях термодинамики, полученных для идеальных систем заменить давления p на величину летучести f , а концентрации С на активности a .

При такой замене выражения для констант равновесия не меняются по форме. Но этот прием позволяет связать экспериментально найденные свойства реального газа с термодинамическими параметрами.

Летучести и активности – это экспериментальные величины, которые находятся из условия, что для раствора при бесконечном разбавлении или газа при давлении стремящимся к 0 активность приближается к аналитической концентрации, а летучесть к реальному давлению идеального газа. Исходя из этой посылки рассчитываются активности и летучести.

При 1273 К и общем равновесии 30 атм. В равновесной системе

содержится 17% (по общему) . Сколько процентов будет содержаться в газе при общем давлении 20 атм.? При каком давлении в газе будет содержаться 25% ? (Газ считать идеальным).

В соответствии с законом Авогадро, объёмный процент равен мольному проценту. Следовательно, при 30 атм. будет равен:

Отсюда находим

В отличие от , для идеальных газов не зависит от давления. На основании этого находим при 20 атм.

= 0,125 или 12,5%

Для 25%

Следовательно,

При 2000°С и общем давлении 1 атм. 2% воды диссоцииовано на водород и кислород. Рассчитайте константу равновесия реакции при этих условиях.


источники:

http://helpiks.org/6-83437.html

http://www.trotted.narod.ru/physchem/lec-6.htm