Уравнение изотермы химической реакции гиббса

Уравнение изотермы химической реакции гиббса

Большинство химических реакций протекают одновременно в двух направлениях: в сторону образования продуктов реакции (прямая реакция) и в сторону разложения последних (обратная реакция). Вследствие химической обратимости реакции не доходят до конца. Скорость прямой реакции уменьшается, а скорость обратной, напротив, возрастает. Когда эти скорости выравниваются наступает состояние химического равновесия.

Так как химически обратимые реакции до перехода в равновесное состояние протекают с конечными скоростями, то с точки зрения термодинамики они не обратимы. Однако можно мысленно представить, что эти реакции идут бесконечно медленно через смежные равновесные состояния. Тогда к ним можно применить общие условия термодинамического равновесия.

Для гомогенных обратимых реакций экспериментально Гульбергом и Ваге был установлен закон действующих масс. При постоянной температуре отношение произведения равновесных концентраций (или парциальных давлений) продуктов реакции к произведению равновесных концентраций (или парциальных равновесий) исходных веществ есть величина постоянная.

Этот экспериментально установленный закон может быть получен методом термодинамических потенциалов. Рассмотрим реакцию в газовой фазе:

аА(г) + b В ↔ сС + dD

Когда система достигает термодинамического равновесия, то термодинамический потенциал при фиксированных естественных переменных достигает минимума. Равновесие, таким образом, можно охарактеризовать выражением химических потенциалов, когда потенциалы продуктов реакции сравняются с потенциалами исходных веществ:

с μ ( с ) + d μ (D) – a μ (a) — b μ (b) = 0 (6 – 1)

Если естественными переменными являются p и T , то = , а = V

Отсюда для систем, подчиняющихся закону идеальных газов, можно получить выражения для μ i

μ i = μ i ° + RTlnCi (6 – 2)

где μ i ° — стандартный химический потенциал.

Подставляется (6 – 2) в (6 – 1) и перенося постоянные величины в левую часть, получаем

сμ C ° + d μ D ° — a μ A ° — b μ B ° = — RTln (6 – 3)

Поскольку в левой части выражение не зависит от концентраций, то выражение под логарифмом является постоянной величиной при постоянной температуре:

Для идеального газа парциальные давления пропорциональны концентрациям, поэтому константа равновесия может быть всегда выражена через равновесные парциальные давления:

Аналогично может быть записано выражение через мольные доли:

Для идеальных газов эти константы связаны между собой соотношением:

где

Следует обратить внимание, что в полученных соотношениях только KN зависит от общего давления. Она позволяет нам оценивать сдвиг равновесия в газовых реакциях при изменении общего давления. Следует иметь в виду, что давление в этих выражениях складывается из парциальных давлений компонентов системы и не учитывает влияние инертных газов, если они присутствуют в реакционной смеси. Естественно инертный газ «разбавляет» компоненты реакционной смеси и поэтому влияет на KN .

Из уравнения (6 – 3) вытекает связь константы равновесия с ∆ rG °:

(6 – 4)

Это уравнение было впервые получено Вант – Гофором методом циклов и получило название уравнения изотермической химической реакции. Очевидно, в этом уравнении ∆ rGT ° относится к этой температуре, при которой определена Кр. Уравнение изотермической химической реакции позволяет определить константу равновесия при заданных условиях не прибегая к исследованию равновесия. Величина ∆ rGT ° может быть рассчитана на основе термических констант для индивидуальных веществ.

Если заданы концентрации (парциальные давления) отличные от равновесных, то можно записать более общий вид уравнения изотермической химической реакции:

Это выражение позволяет определить направление самопроизвольного процесса.

Уравнение изотермы химической реакции позволяет получить выражение для температурной зависимости константы равновесия.

Запишем уравнение Гиббса – Гельмгольца:

Подставим выражение для из (6 – 4)

(6 — 5)

Дифференцируем уравнение (6 – 5)


(6 — 5´)

Из уравнения (6 — 5´) получаем уравнение изобары химической реакции:

(6 – 6)

Если проинтегрировать уравнение (6 – 6) в предположении, что ∆ rHT ° не зависит от температуры, то получим уравнение:

где С – константа интегрирования.

Уравнение (6 – 7) хорошо выполняется в узких интервалах температур и позволяет определить ∆ rGT °.

Для широких интервалов температур ln K р представляют в виде степенных рядов или других аналитических формах:

Такие выражения позволяют рассчитать все термодинамические функции для процессов, для которых данные зависимости получены.

Выражения для термодинамических потенциалов, полученные для идеального газа. Для реальных газов, а особенно для газовых растворов возникают затруднения. Это связано с тем, что расчет концентраций и давлений должен быть проведен исходя из уравнения состояния. Однако для реальных систем единое достаточно простое уравнение состояния получить не удалось.

В связи с этим в термодинамике реальных систем применяется эмпирический метод, предложенный Льюисом. Льюис предложил в уравнениях термодинамики, полученных для идеальных систем заменить давления p на величину летучести f , а концентрации С на активности a .

При такой замене выражения для констант равновесия не меняются по форме. Но этот прием позволяет связать экспериментально найденные свойства реального газа с термодинамическими параметрами.

Летучести и активности – это экспериментальные величины, которые находятся из условия, что для раствора при бесконечном разбавлении или газа при давлении стремящимся к 0 активность приближается к аналитической концентрации, а летучесть к реальному давлению идеального газа. Исходя из этой посылки рассчитываются активности и летучести.

При 1273 К и общем равновесии 30 атм. В равновесной системе

содержится 17% (по общему) . Сколько процентов будет содержаться в газе при общем давлении 20 атм.? При каком давлении в газе будет содержаться 25% ? (Газ считать идеальным).

В соответствии с законом Авогадро, объёмный процент равен мольному проценту. Следовательно, при 30 атм. будет равен:

Отсюда находим

В отличие от , для идеальных газов не зависит от давления. На основании этого находим при 20 атм.

= 0,125 или 12,5%

Для 25%

Следовательно,

При 2000°С и общем давлении 1 атм. 2% воды диссоцииовано на водород и кислород. Рассчитайте константу равновесия реакции при этих условиях.

Уравнение изотермы химической реакции гиббса

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

1.7 ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Как было показано выше, протекание самопроизвольного процесса в термодинамической системе сопровождается уменьшением свободной энергии системы (dG 2 Y > 0. Таким образом, условием термодинамического равновесия в закрытой системе является минимальное значение соответствующего термодинамического потенциала :

Изобарно-изотермические (P = const, T = const):

Изохорно-изотермические (V = const, T = const):

Состояние системы с минимальной свободной энергией есть состояние термодинамического равновесия:

Термодинамическим равновесием называется такое термодинамическое состояние системы, которое при постоянстве внешних условий не изменяется во времени, причем эта неизменяемость не обусловлена каким-либо внешним процессом.

Учение о равновесных состояниях – один из разделов термодинамики. Далее мы будем рассматривать частный случай термодинамического равновесного состояния – химическое равновесие. Как известно, многие химические реакции являются обратимыми, т.е. могут одновременно протекать в обоих направлениях – прямом и обратном. Если проводить обратимую реакцию в закрытой системе, то через некоторое время система придет в состояние химического равновесия – концентрации всех реагирующих веществ перестанут изменяться во времени. Необходимо отметить, что достижение системой состояния равновесия не означает прекращения процесса; химическое равновесие является динамическим, т.е. соответствует одновременному протеканию процесса в противоположных направлениях с одинаковой скоростью. Химическое равновесие является подвижным – всякое бесконечно малое внешнее воздействие на равновесную систему вызывает бесконечно малое изменение состояния системы; по прекращении внешнего воздействия система возвращается в исходное состояние. Ещё одним важным свойством химического равновесия является то, что система может самопроизвольно прийти в состояние равновесия с двух противоположных сторон. Иначе говоря, любое состояние, смежное с равновесным, является менее устойчивым, и переход в него из состояния равновесия всегда связан с необходимостью затраты работы извне.

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С, парциальные давления P или мольные доли X реагирующих веществ. Для некоторой реакции

соответствующие константы равновесия выражаются следующим образом:

(I.78) (I.79)

(I.80)

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. Выражение для константы равновесия для элементарной обратимой реакции может быть выведено из кинетических представлений.

Рассмотрим процесс установления равновесия в системе, в которой в начальный момент времени присутствуют только исходные вещества А и В. Скорость прямой реакции V1 в этот момент максимальна, а скорость обратной V2 равна нулю:

(I.81)

(I.82)

По мере уменьшения концентрации исходных веществ растет концентрация продуктов реакции; соответственно, скорость прямой реакции уменьшается, скорость обратной реакции увеличивается. Очевидно, что через некоторое время скорости прямой и обратной реакции сравняются, после чего концентрации реагирующих веществ перестанут изменяться, т.е. установится химическое равновесие.

Приняв, что V1 = V2, можно записать:

(I.83)

(I.84)

Т.о., константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Теперь рассмотрим (с некоторыми упрощениями) более строгий термодинамический вывод выражения для константы равновесия. Для этого необходимо ввести понятие химический потенциал . Очевидно, что величина свободной энергии системы будет зависеть как от внешних условий (T, P или V), так и от природы и количества веществ, составляющих систему. В случае, если состав системы изменяется во времени (т.е. в системе протекает химическая реакция), необходимо учесть влияние изменения состава на величину свободной энергии системы. Введем в некоторую систему бесконечно малое количество dni молей i-го компонента; это вызовет бесконечно малое изменение термодинамического потенциала системы. Отношение бесконечно малого изменения величины свободной энергии системы к бесконечно малому количеству компонента, внесенному в систему, есть химический потенциал μ i данного компонента в системе:

(I.85)

(I.86)

Химический потенциал компонента связан с его парциальным давлением или концентрацией следующими соотношениями:

(I.87)

(I.88)

Здесь μ°i – стандартный химический потенциал компонента (Pi = 1 атм., Сi = 1 моль/л.). Очевидно, что изменение свободной энергии системы можно связать с изменением состава системы следующим образом:

(I.89)

(I.90)

Поскольку условием равновесия является минимум свободной энергии системы (dG = 0, dF = 0), можно записать:

(I.91)

В закрытой системе изменение числа молей одного компонента сопровождается эквивалентным изменением числа молей остальных компонентов; т.е., для приведенной выше химической реакции имеет место соотношение:

(I.92)

Отсюда можно получить следующее условие химического равновесия в закрытой системе:

(I.93)

В общем виде условие химического равновесия можно записать следующим образом:

(I.94)

Выражение (I.94) носит название уравнения Гиббса – Дюгема. Подставив в него зависимость химического потенциала от концентрации, получаем:

(I.95)

(I.96)

Для изобарно-изотермического процесса аналогичным образом можно получить:

(I.97)

Полученные нами выражения I.96 – I.97 есть изотерма химической реакции . Если система находится в состоянии химического равновесия, то изменение термодинамического потенциала равно нулю; получаем:

(I.98)

(I.99)

Здесь сi и рiравновесные концентрации и парциальные давления исходных веществ и продуктов реакции (в отличие от неравновесных Сi и Рi в уравнениях I.96 – I.97).

Поскольку для каждой химической реакции стандартное изменение термодинамического потенциала ΔF° и ΔG° есть строго определенная величина, то произведение равновесных парциальных давлений (концентраций), возведенных в степень, равную стехиометрическому коэффициенту при данном веществе в уравнении химической реакции (стехиометрические коэффициенты при исходных веществах принято считать отрицательными) есть некоторая константа, называемая константой равновесия. Уравнения (I.98, I.99) показывают связь константы равновесия со стандартным изменением свободной энергии в ходе реакции. Уравнение изотермы химической реакции связывает величины реальных концентраций (давлений) реагентов в системе, стандартного изменения термодинамического потенциала в ходе реакции и изменения термодинамического потенциала при переходе из данного состояния системы в равновесное. Знак ΔG (ΔF) определяет возможность самопроизвольного протекания процесса в системе. При этом ΔG° (ΔF°) равно изменению свободной энергии системы при переходе из стандартного состояния (Pi = 1 атм., Сi = 1 моль/л) в равновесное. Уравнение изотермы химической реакции позволяет рассчитать величину ΔG (ΔF) при переходе из любого состояния системы в равновесное, т.е. ответить на вопрос, будет ли химическая реакция протекать самопроизвольно при данных концентрациях Сi (давлениях Рi) реагентов:

(I.100)

(I.101)

Если изменение термодинамического потенциала меньше нуля, процесс в данных условиях будет протекать самопроизвольно.

1.7.1 Влияние внешних условий на химическое равновесие

При постоянстве внешних условий система может находиться в состоянии равновесия сколь угодно долго. Если изменить эти условия (т.е. оказать на систему какое-либо внешнее воздействие), равновесие нарушается; в системе возникает самопроизвольный процесс, который продолжается до тех пор, пока система опять не достигнет состояния равновесия (уже при новых условиях). Рассмотрим, как влияют на положение равновесия некоторые факторы.

1.7.2 Влияние давления и концентрации

Рассмотрим несколько возможных случаев смещения равновесия.

1. В систему добавлено исходное вещество. В этом случае

; ;

По уравнению изотермы химической реакции (I.100 – I.101) получаем: ΔF 0; ΔG > 0. Химическое равновесие будет смещено влево (в сторону расходования продуктов реакции и образования исходных веществ).

3. Изменено общее давление (для реакций в газовой фазе).

Парциальные давления всех компонентов Рi в этом случае изменяются в одинаковой степени; направление смещения равновесия будет определяться суммой стехиометрических коэффициентов Δn.

Учитывая, что парциальное давление газа в смеси равно общему давлению, умноженному на мольную долю компонента в смеси (Рi = РХi), изотерму реакции можно переписать в следующем виде (здесь Δn = Σ(ni) продΣ(ni) исх):

(I.102)

(I.103)

Примем, что Р2 > Р1. В этом случае, если Δn > 0 (реакция идет с увеличением числа молей газообразных веществ), то ΔG > 0; равновесие смещается влево. Если реакция идет с уменьшением числа молей газообразных веществ (Δn изобару Вант-Гоффа :

(I.06)

Рассуждая аналогичным образом, для процесса, проходящего в изохорных условиях, можно получить изохору Вант-Гоффа :

(I.107)

Изобара и изохора Вант-Гоффа связывают изменение константы химического равновесия с тепловым эффектом реакции в изобарных и изохорных условиях соответственно. Очевидно, что чем больше по абсолютной величине тепловой эффект химической реакции, тем сильнее влияет температура на величину константы равновесия. Если реакция не сопровождается тепловым эффектом, то константа равновесия не зависит от температуры.

Экзотермические реакции: ΔH° 0 (ΔU° > 0). В этом случае температурный коэффициент логарифма константы равновесия положителен; повышение температуры увеличивает величину константы равновесия (смещает равновесие вправо).

Графики зависимостей константы равновесия от температуры для экзотермических и эндотермических реакций приведены на рис. I.4.

Рис. 1.4 Зависимость константы равновесия от температуры.

Действие рассмотренных нами факторов (давления, концентрации и температуры), равно как и любых других, на систему, находящуюся в состоянии равновесия, обобщает принцип смещения равновесия , называемый также принципом Ле Шателье – Брауна :

Если на систему, находящуюся в состоянии истинного равновесия, оказывается внешнее воздействие, то в системе возникает самопроизвольный процесс, компенсирующий данное воздействие.

Принцип Ле Шателье – Брауна является одним из следствий второго начала термодинамики и применим к любым макроскопическим системам, находящимся в состоянии истинного равновесия.


Copyright © С. И. Левченков, 1996 — 2005.

Уравнение изотермы химической реакции

Для решения принципиальной возможности или невозможности того или иного физико-химического процесса необходимо, прежде всего, установить, является ли интересующая нас система при данных условиях (при данных температуре, давлении, концентрации) равновесной или неравновесной. Если система неравновесна, следует выяснить, по какую сторону от равновесия находится система и насколько она удалена от него.

В изобарно-изотермических процессах состояние равновесия или степень отклонения от него определяют по знаку и величине изменения изобарного потенциала ΔG, которое рассчитывают по уравнению изотермы химической реакции или уравнению Вант — Гоффа:

, (39)

где — парциальные давления компонентов, относящиеся к произвольно заданному составу реакционной системы, то есть фактические парциальные давления в данном состоянии; ΔG =G2G1 – изменение изобарного потенциала при определенной температуре и произвольно выбранных концентрациях реагентов.

Для изохорно-изотермических процессов состояние равновесия или степень отклонения от него определяют по знаку и величине изменения изохорного потенциала ΔF. Уравнение изотермы запишем, используя концентрации веществ:

. (40)

Так как в стандартном состоянии активности веществ принимают равными единице аi=1, то в общем случае стандартное изменение изобарного потенциала:

(41)

и . (42)

Знак ΔG показывает, по какую сторону от равновесия находится система в данном состоянии, и по нему можно судить о направлении процесса.

Если ΔG G2. Процессы самопроизвольно идут только в сторону меньшего значения потенциала, и реакция будет протекать только вправо (прямое течение). Если ΔG >0, то в системе возможно обратное течение процесса – справа налево согласно записи уравнения химической реакции.

Абсолютная величина ‌│ΔG‌│ тем больше, чем сильнее отличаются фактические и равновесные концентрации реагентов. Абсолютная величина │ΔG‌│ является мерой отклонения рассматриваемой системы от равновесия.

Эта же величина является мерой химического сродства, то есть способности веществ вступать между собой в химическое взаимодействие при определённых температуре, давлении и заданном соотношении концентрации реагентов.

Химическое сродство характеризует только стремление к взаимодействию, основанному на разности потенциалов, но ничего не говорит о возможности реализации процессов, об их скорости и пути протекания.

Для сопоставления химического сродства элементов в различных реакциях принимают, что все реагенты находятся в стандартном состоянии при данной температуре, то есть газы считаются идеальными и каждый из них находиться под давлением 1,01·10 5 Па (1атм), а конденсированные вещества в чистом виде берутся в их реальном устойчивом состоянии при той же температуре и при общем давлении 1,01·10 5 Па (1 атм).

Выбор стандартного состояния может быть произвольным. Важно, что при этом активности веществ принимаются равными единице аi=1.

Зная изменение изобарного потенциала процесса в стандартных условиях, можно определить константу равновесия химической реакции из уравнения (41):

, (43)

где — константа равновесия химической реакции, — абсолютная температура, — универсальная газовая постоянная.

Если и R выражены в Дж/(моль·К), то уравнение имеет вид

. (44)

На практике часто используется уравнение, в котором изменение стандартного изобарного потенциала реакции выражено через изменения энтальпии и энтропии (29):

. (45)

В состоянии равновесия , . Если и >>1 – реакция прямая. Если и

Дата добавления: 2016-02-04 ; просмотров: 922 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://physchem.chimfak.sfedu.ru/Source/PCC/Termodyn_7.htm

http://helpiks.org/6-83437.html