Уравнение касательной к линии в пространстве

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Касательная, нормальная плоскость, соприкасающаяся плоскость, бинормаль, главная нормаль, репер Френе

Краткие теоретические сведения

Кривая в пространстве

Рассмотрим в пространстве гладкую кривую $\gamma$.

Пусть точка $M$ принадлежит данной кривой и отвечает значению параметра $t=t_0$. Тогда радиус-вектор и координаты данной точки равны:

\begin \vec=\vec(t_0), \quad x_0=x(t_0),\, y_0=y(t_0), \, z_0=z(t_0). \end

Пусть в точке $M$ $ \vec(t_0)\neq\vec<0>$, то есть $M$ не является особой точкой.

Касательная к кривой

Касательная к кривой, проведенная в точке $M$, имеет направляющий вектор коллинеарный вектору $\vec(t_0)$.

Пусть $\vec$ — радиус-вектор произвольной точки касательной, тогда уравнение этой касательной имеет вид

Здесь $\lambda\in(-\infty,+\infty)$ — параметр, определяющий положение точки на касательной (то есть разным значениям $\lambda$ будут соответствовать разные значения $\vec$).

Если $\vec=\$, $M = (x(t_0), y(t_0), z(t_0))$, то можно записать уравнение касательной в каноническом виде:

Нормальная плоскость

Плоскость, проходящую через данную точку $M$ кривой $\gamma$ перпендикулярно касательной в этой точке, называют нормальной плоскостью.

Пусть $\vec$ — радиус-вектор произвольной точки нормальной плоскости, тогда ее уравнение можно записать в векторном виде через скалярное произведение векторов $\vec-\vec(t_0)$ и $\vec(t_0)$:

Если расписать покоординатно, то получим следующее уравнение:

\begin x'(t_0)\cdot(X-x(t_0))+y'(t_0)\cdot(Y-y(t_0))+z'(t_0)\cdot(Z-z(t_0))=0. \end

Соприкасающаяся плоскость

Плоскость, проходящую через заданную точку $M$ кривой $\gamma$ параллельно векторам $\vec(t_0)$, $\vec(t_0)$, когда они неколлинеарны, называют соприкасающейся плоскостью кривой.

Если $\vec$ — радиус-вектор произвольной точки соприкасающейся плоскости, то ее уравнение можно записать через смешанной произведение трех компланарных векторов $\vec-\vec(t_0)$, $\vec(t_0)$, $\vec(t_0)$:

Зная координаты точки и векторов, определяющих плоскость, запишем смешанное произведение через определитель. Получим следующее уравнение соприкасающейся плоскости:

\begin \left| \begin X-x(t_0) & Y-y(t_0) & Z-z(t_0) \\ x'(t_0) & y'(t_0) & z'(t_0)\\ x»(t_0) & y»(t_0) & z»(t_0) \\ \end \right|=0 \end

Бинормаль и главная нормаль

Прямая, проходящая через точку $M$ кривой $\gamma$ перпендикулярно касательной к кривой в этой точке, называется нормалью.

Таких кривых можно провести бесконечно много, все они образуют нормальную плоскость. Мы выделим среди нормалей две — бинормаль и главную нормаль.

Нормаль, перпендикулярную соприкасающейся плоскости, называют бинормалью.

Нормаль, лежащую в соприкасающейся плоскости, называют главной нормалью.

Из определения бинормали (перпендикулярна касательной и перпендикулярна соприкасающейся плоскости) следует, что в качестве ее направляющего вектора мы можем взять векторное произведение $ \vec(t_0)\times\vec(t_0)$, тогда ее уравнение можно записать в виде:

Как и раньше, $\vec$ — радиус-вектор произвольной точки бинормали. Каноническое уравнение прямой:

Из определения главной нормали (перпендикулярна касательной и перпендикулярна бинормали) следует, что в качестве ее направляющего вектора можно взять векторное произведение $\vec(t_0) \times\left[\vec(t_0),\vec(t_0)\right]$:

Уравнение в каноническом виде распишите самостоятельно.

Спрямляющая плоскость

Плоскость, проходящую через заданную точку $M$ кривой $\gamma$ перпендикулярно главной нормали, называют спрямляющей плоскостью.

Другое определение: Плоскость, определяемую касательной к кривой и бинормалью в той же точке, называют спрямляющей плоскостью.

Второе определение позволяет записать уравнение спрямляющей плоскости через смешанное произведение трех компланарных векторов, определяющих эту плоскость $\vec-\vec(t_0)$, $\vec(t_0)$, $\vec(t_0)\times\vec(t_0)$: \begin \left(\vec-\vec(t_0),\, \vec(t_0),\, \vec(t_0)\times\vec(t_0)\right)=0. \end Зная координаты соответствующих векторов, можно легко записать это смешанное произведение через определитель, раскрыв который, вы получите общее уравнение спрямляющей плоскости.

Репер Френе

Орт (то есть единичный вектор) касательной обозначим: $$ \vec<\tau>=\frac<\vec(t_0)><|\vec(t_0)|>. $$ Орт бинормали: $$ \vec<\beta>=\frac<\vec(t_0)\times\vec(t_0)><|\vec(t_0)\times\vec(t_0)|>. $$ Орт главной нормали: $$ \vec<\nu>=\frac<\vec(t_0) \times[\vec(t_0),\,\vec(t_0)]><|\vec(t_0) \times [\vec(t_0),\,\vec(t_0)]|>. $$

Правая тройка векторов $\vec<\tau>$, $\vec<\nu>$, $\vec<\beta>$ называется репером Френе.

Решение задач

Задача 1

Кривая $\gamma$ задана параметрически:

Точка $M$, принадлежащая кривой, соответствует значению параметра $t=0$. Записать уравнения касательной, бинормали, главной нормали, нормальной плоскости, соприкасающейся плоскости и спрямляющей плоскости, проведенных к данной кривой в точке $M$. Записать векторы репера Френе.

Решение задачи 1

Задачу можно решать разными способами, точнее в разном порядке находить уравнения прямых и плоскостей.

Начнем с производных.

\begin 1\cdot X+0\cdot Y+1\cdot (Z-1)=0\,\,\ \Rightarrow \,\, X+Z=1. \end

\begin \left| \begin X-0 & Y-0 & Z-1 \\ 1 & 0 & 1\\ 0 & 2 & 1 \\ \end \right|=0 \end Раскрываем определитель, получаем уравнение: \begin -2X-Y+2Z-2=0 \end

\begin 1\cdot X-4\cdot Y-1\cdot (Z-1)=0\,\,\ \Rightarrow \,\, X-4Y-Z+1=0. \end

Поскольку направляющий вектор главной нормали у нас был найден как векторное произведение направляющих векторов касательной и бинормали, тройка $\vec<\tau>$, $\vec<\nu>$, $\vec<\beta>$ не будет правой (по определению векторного произведения вектор $\vec<\tau>\times\vec<\beta>$ направлен так, что тройка векторов $\vec<\tau>$, $\vec<\beta>$, $\vec<\nu>=\vec<\tau>\times\vec<\beta>$

— правая). Изменим направление одного из векторов. Например, пусть

Теперь тройка $\vec<\tau>$, $\vec<\nu>$, $\vec<\tilde<\beta>>$ образует репер Френе для кривой $\gamma$ в точке $M$.

Задача 2

Написать уравнение соприкасающейся плоскости к кривой $$ x=t,\,\, y=\frac<2>,\,\, z=\frac<3>, $$ проходящей через точку $N(0,0,9)$.

Решение задачи 2

Нетрудно заметить, что точка $N$ не принадлежит заданной кривой $\gamma$. Следовательно соприкасающаяся плоскость проведена в какой-то точке $M(t=t_0)\in\gamma$, но при этом плоскость проходит через заданную точку $N(0,0,9)$.

Найдем значение параметра $t_0$.

Для этого запишем уравнение соприкасающейся плоскости, проведенной в произвольной точке $M(t=t_0)$. И учтем, что координаты $N$ должны удовлетворять полученному уравнению.

Соприкасающаяся плоскость определяется векторами $\vec(t_0)$, $\vec(t_0)$, поэтому записываем определитель \begin \left| \begin X-t_0 & Y-t_0^2/2 & Z-t_0^3/3 \\ &&\\ 1 & t_0 & t^2_0 \\ &&\\ 0 & 1 & 2t_0 \end \right|=0 \quad \Rightarrow \end

\begin (X-t_0)\cdot t_0^2 — (Y-t_0^2/2)\cdot 2t_0 + (Z-t_0^3/3)=0. \end Подставляем вместо $X$, $Y$, $Z$ координаты точки $N$: $X=0$, $Y=0$, $Z=9$, упрощаем и получаем уравнение относительно $t_0$: \begin 9-t_0^3/3=0 \quad \Rightarrow \quad t_0=3. \end Подставив найденное $t_0$ в записанное ранее уравнение, запишем искомое уравнение соприкасающейся плоскости: $$ 9X-6Y+Z-9=0. $$

Задача 3

Через точку $P\left(-\frac45,1,2\right)$ провести плоскость, являющуюся спрямляющей для кривой: $$ x=t^2,\,\, y=1+t,\,\, z=2t. $$

Решение задачи 3

Как и в предыдущей задаче нам неизвестны координаты точки, в которой проведена спрямляющая плоскость к заданной кривой. Найдем их.

Спрямляющая плоскость определяется касательной и бинормалью, то есть векторами $\vec(t_0)$ и $\vec(t_0)\times\vec(t_0)$.

Записываем уравнение спрямляющей плоскости: \begin \left| \begin X-t_0^2 & Y-1-t_0 & Z-2t_0 \\ 2t_0 & 1 & 2\\ 0 & 4 & -2 \end \right|= 0 \end

Раскрываем определитель. Подставляем в уравнение координаты точки $P$: $X=-4/5$, $Y=1$, $Z=2$. Упрощаем и получаем уравнение для нахождения $t_0$: \begin 5t_0^2-8t_0-4=0 \,\, \Rightarrow \,\, t_<01>=2,\, t_<02>=-\frac25. \end

Уравнения соприкасающихся плоскостей к заданной кривой, проходящих через $P$, принимают вид: \begin & 5X-4Y-8Z+24=0,\\ & 25X+4Y+8Z=0. \end

Лекция Пространственные кривые. Задание линии в пространстве. Касательная кривой. длина кривой. Натуральный параметр кривой

(лекции №3, 4, 5,практические занятия №2, 3, контр. работа 20 мин.)

1)Понятие кривой в пространстве. Параметрическое задание кривой.

2)Уравнения касательной в случае параметрического задания кривой и в случае задания кривой, как пересечения двух поверхностей.

3)Длина дуги кривой. Натуральный параметр кривой.

4)Определение 2.1 (Круг, радиус и центр кривизны, кривизна)

5)Определение 2.2 (главная нормаль и формула для её нахождения).

6)Определение 2.3 (бинормаль и формула для её нахождения).

7)Определение 2.4 (плоскостей сопровождающего трёхгранника).

8)Формулы Френе. Кручение.

9)Определение 2.5 (эволюты). Уравнение эволюты.

10)Определение 2.6 (эвольвенты).

2.1 ЗАДАНИЕ ЛИНИИ В ПРОСТРАНСТВЕ.

Под кривой в пространстве будем понимать множествоГточек в пространстве, заданное, как непрерывный образ некоторого промежутка числовой оси.

Кривую можно задать параметрически:

(2.1)

или как годограф вектор-функции , .

2.2 КАСАТЕЛЬНАЯ КРИВОЙ.

Кривая называется дифференцируемой, непрерывно дифференцируемой, дважды дифференцируемой и т.д., если соответственно координатные функции в формуле (2.1) дифференцируемы, непрерывно дифференцируемы, дважды дифференцируемы и т.д.

ПустьГ– дифференцируемая кривая, заданная как годограф вектор-функции ; и Тогда прямая, являющаяся касательной к годографу вектор – функции в конце радиус – вектора , называется касательной к кривойГ.Поскольку по геометрическому смыслу является направляющим вектором касательной, уравнения касательной в точкеМ00,y0,z0)можно записать в виде:

(2.2)

В случае задания кривой уравнениями

x=x,y=f(x),

(здесь роль параметра играет переменнаях), уравнения касательной имеют вид:

(2.3)

Составим уравнение касательной к кривой, заданной, как пересечение двух поверхностей, заданных уравнениями в неявной форме

Дифференцируя эти тождества, получим

Отсюда видно, что вектор касательной перпендикулярен каждому из векторов , т.е. коллинеарен их векторному произведению

(2.5)

Если на кривой указать положительное направление, соответствующее возрастанию параметраt,то вектор называют касательным вектором ориентированной кривой.

Углом между ориентированными кривыми, пересекающимися в некоторой точке, называется угол между их касательными в этой точке.

Пример 2.1Составить уравнения касательной к винтовой линии: в произвольной точкеtи для .

Решение. Так как то уравнение касательной в произвольной точке согласно (2.2) будет иметь вид

.

В частности при :

Пример 2.2Составить уравнения касательной к кривой Вивиани:x 2 +y 2 +z 2 =R 2 ,x 2 +y 2 =Rxв точкеМ0(R/2,R/2, ).

Решение: Кривая Вивиани является линией пересечения поверхностей сферы с центром в начале координат и кругового цилиндра с центром (образующей), смещенным вдоль оси (в данном случае)Охна величину, равную радиусу цилиндра. Диаметр цилиндра равен радиусу сферы.

Запишем уравнения поверхностей в неявном виде

x 2 +y 2 +z 2 R 2 =0,

x 2 +y 2 Rх=0.

Тогда и согласно (2.2) уравнения касательной в произвольной точке линии будут иметь вид

или

В точкеМ0(R/2,R/2, )уравнение касательной:

2.3ДЛИНА КРИВОЙ. НАТУРАЛЬНЫЙ ПАРАМЕТР КИВОЙ.

Рассмотрим дугу непрерывно дифференцируемой кривой

Г: x=x(t), y=y(t), z=z(t), .

В разделе «Определённый интеграл» мы получили формулу для нахождения длины дуги кривой:

(2.6)

Если в качестве параметра выбрана координатах,и криваязадана уравнениями:x=x,y=y(x),z=z(x), ,то:

.

При переменном верхнем пределе длина дуги будет переменной величиной:

,отсюда:

.(2.7)

Если параметромtкривой является переменная длина дугиs, то координаты точки М кривой будут зависеть от длины дугиs=АМ:x=x(s),y=y(s),z=z(s)(естественная параметризация).Тогда в формуле (2.7) и, следовательно, , т.е. вектор будет единичным вектором касательной к кривой.

Точка(x(t0),y(t0),z(t0))кривой называется особой, если , и неособой, если .

Для всякой непрерывно дифференцируемой кривой без особых точек существует ее представление , в котором за параметрsвзята переменная длина дуги этой кривой, т.е. натуральнаяпараметризация.

Пример 2.3Найти длину дугиs(t)винтовой линии

x=acost,y=asint,z=bt, .(2.7)

Решение: Касательный вектор винтовой линии равен . Тогда

Пример 2.4Записать натуральную параметризацию винтовой линии.

Решение: Длина дуги линии .Отсюда Подставляяtв выраженияx(t),y(t),z(t),получим уравнение винтовой линии в естественной (натуральной) параметризации:

где

15.13. Уравнения касательной к пространственной линии. Кривизна пространственной линии

Рассмотрим пространственную линию(рис. 15.18), заданную векторнопараметрическим уравнением

Или параметрическими уравнениями

Где х (/), у (;), 2 (I) — дифференцируемые функции переменной (. Зафиксируем значение 10 параметра I, ему соответствует точка Л/0(х0, у0,20), где х0 = х (/0), Уо=У(*о)> 20=2(/0).

Уравнения касательной к пространственной линии (15.24) в точке М0(х0,у0,20) имеют вид

2о П5 25ч *'(*„) у’Но) 2′(‘оУ ‘

Нормальной плоскостью к пространственной линии в данной ее точке М называется плоскость, проходящая через точку М и перпендикулярная касательной к данной кривой в той же точке.

Нормальная плоскость к линии (15.24) в точке М0(х0,у0,г0) имеет уравнение












*’ (*о) (х-х0) + / (10) (у — у0) + г'((0) (г-го) = О. (15.26)

Если 5 — длина дуги, то единичный вектор касательной X к линии у определяется формулой (15.22). Придав аргументу I приращение Д/, получим точку М линии у и соответствующий вектор касательной г + Дг. Степень изогнутости кривой можно характеризовать скоростью поворота вектора г.

Кривизной к линии у в точке М0 называется модуль производной вектор-функции т = г (а) в данной точке, т. е.


источники:

http://greleon.ru/vishmath/lekcii/182-lekciya-prostranstvennye-krivye-zadanie-linii-v-prostranstve-kasatelnaya-krivoy-dlina-krivoy-naturalnyy-parametr-krivoy.html

http://matica.org.ua/metodichki-i-knigi-po-matematike/spravochnik-a-a-gusak-v-m-gusak/15-13-uravneniia-kasatelnoi-k-prostranstvennoi-linii-krivizna-prostranstvennoi-linii