Уравнение кинематической связи угловых и линейных величин

Связь угловых величин с линейными величинами в физике

К линейным величинам относят:

  1. Путь;
  2. Скорость;
  3. Касательное ускорение;
  4. Нормальное ускорение;

К угловым величинам относят:

  1. Угол поворота;
  2. Угловую скорость;
  3. Угловое ускорение;

Связь между линейными и угловыми величинами выражается в следующих формулах:

  1. ;
  2. ;
  3. ;
  4. ;
  5. ;
  6. ;

Таким не хитрым образом мы познакомились с «связь угловых величин с линейными величинами в физике»!

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками

Вопрос1 Классическая механика и границы ее применимости. Материальная точка. Система отсчета. Кинематические уравнения

Классическую механику подразделяют на кинематику, статику и динамику.

Материальная точка- тело, размерами которого можно пренебречь. Движение материальной точки по отношению к системе отсчета может быть задано векторным или координатным способами.

При векторном способе положение точки А, рис. 1, в момент времени t определяется ее радиусом вектором , проведенным из начала координат до движущейся точки.

Закон движения дается векторным уравнением . При координатном способе положение точки А определяется координатами x, y, z, а закон движения задается тремя уравнениями:

при этом

Системой отсчета называется система координат, снабженная часами и жестко связанная с абсолютно твердым телом.

Вопрос 2 Траектория, путь, перемещение. Средняя и мгновенная скорости. Равномерное прямолинейное движение

Непрерывная линия, которую описывает точка при своем движении, называется траекторией. Путь – это длина траектории, пройденная точкой.

Перемещение- изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения

Мгновенная скорость

Средняя скорость Vср=S/t

Вопрос 3 Ускорение. Нормальная и тангенциальная составляющие ускорения. Равнопеременное движение

Ускорение- быстрота изменения скорости

Тангенциальное ускорение — компонента ускорения, направленная по касательной к траектории движения. Характеризует изменение модуля скорости

Нормальное ускорение возникает всегда при движении точки по траектории с ненулевой кривизной. Характеризует изменение скорости по направлению.

=

Равнопеременное движение — движение с постоянным ускорением.

x(t)=x0+V0t+at /2

Вопрос 4 Движение материальной точки по окружности. Угол поворота, угловая скорость, угловое ускорение

Рассмотрим движение материальной точки по окружности радиуса R Пусть за время точка повернется на угол , тогда угловая скорость

,

Угловое ускорение характеризует быстроту изменения угловой скорости, т.е.

Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками

Понятно, что линейные и соответствующие им угловые величины должны быть определенным образом связаны между собой. Найдем эти связи.

При повороте радиуса, проведенного в точку М (см. рис. 2), на угол φ точка пройдет по дуге окружности путь

За малое время Δt точка проходит расстояние Δs=2−1 , где φ2 и φ1 — углы поворота в конце и в начале интервала Δt. Разделив последнее равенство на Δt и учитывая, что ΔsΔt=υ и φ2−φtφΔt=ω, получим

Заметим, что соотношение (2) связывает между собой линейную и угловую скорости не только при равномерном движении точки по окружности, но- и при неравномерном движении тоже. Изменение модуля скорости точки за время Δt есть Δυ=2−1 , где ω2 и ω1 — угловые скорости в конце и в начале промежутка Δt. Разделим последнее равенство на Δt и учтем, что ΔυΔt=ak и ω2−ωtωΔt=ε, тогда касательное ускорение

Соотношения (1), (2) и (3) дают для движущейся по окружности точки простую связь между линейными и угловыми величинами: линейная величина равна произведению радиуса окружности на соответствующую угловую величину. Эти соотношения получены нами для конкретной точки М колеса троллейбуса, но они справедливы и для любой другой точки вращающегося (как равномерно, так и неравномерно) тела.

При движении точки по кривой линейная скорость направлена по касательной к кривой и по модулю равна произведению угловой скорости на радиус кривизны кривой.

Уравнение кинематической связи угловых и линейных величин

«Физика — 10 класс»

Угловая скорость.

Каждая точка тела, вращающегося вокруг неподвижной оси, проходящей через точку О, движется по окружности, и различные точки проходят за время Δt разные пути. Так, АА1 > ВВ1 (рис. 1.62), поэтому модуль скорости точки А больше, чем модуль скорости точки В. Но радиус-векторы, определяющие положение точек А и В, поворачиваются за время Δt на один и тот же угол Δφ.

Угол φ — угол между осью ОХ и радиус-вектором определяющим положение точки А (см. рис. 1.62).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени радиус-векторы поворачиваются на одинаковые углы.

Чем больше угол поворота радиус-вектора, определяющего положение какой-то точки твёрдого тела, за определённый промежуток времени, тем быстрее вращается тело и тем больше его угловая скорость.

Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела υφ к промежутку времени υt, за который этот поворот произошёл.

Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

Угловая скорость в СИ выражается в радианах в секунду (рад/с). Например, угловая скорость вращения Земли вокруг оси 0,0000727 рад/с, а точильного диска — около 140 рад/с.

Угловую скорость можно связать с частотой вращения.

Частота вращения — число полных оборотов за единицу времени (в СИ за 1 с).

Если тело совершает ν (греческая буква «ню») оборотов за 1 с, то время одного оборота равно 1/ν секунд.

Время, за которое тело совершает один полный оборот, называют периодом вращения и обозначают буквой Т.

Таким образом, связь между частотой и периодом вращения можно представить в виде

Полному обороту тела соответствует угол Δφ = 2π. Поэтому согласно формуле (1.26)

Если при равномерном вращении угловая скорость известна и в начальный момент времени t0 = 0 угол φ0 = 0, то угол поворота радиус-вектора за время t согласно уравнению (1.26)

Если φ0 ≠ 0, то φ — φ0 = ωt, или φ = φ0 ± ωt.

Радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности, 1 рад = 57°17’48». В радианной мере угол равен отношению длины дуги окружности к её радиусу: φ = l/R.

Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твёрдого тела, и осью ОХ увеличивается (рис. 1.63, а), и отрицательные, когда он уменьшается (рис. 1.63, б).

Тем самым мы можем найти положение точек вращающегося тела в любой момент времени.

Связь между линейной и угловой скоростями.

Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть её отличие от угловой скорости.

Мы уже отмечали, что при вращении абсолютно твёрдого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.

Установим связь между линейной скоростью любой точки вращающегося тела и его угловой скоростью. Точка, лежащая на окружности радиусом R, за один оборот пройдёт путь 2πR. Поскольку время одного оборота тела есть период Т, то модуль линейной скорости точки можно найти так:

Так как ω = 2πν, то

Из этой формулы видно, что, чем дальше расположена точка тела от оси вращения, тем больше её линейная скорость. Для точек земного экватора υ = 463 м/с, а для точек на широте Санкт-Петербурга υ = 233 м/с. На полюсах Земли υ = 0.

Модуль центростремительного ускорения точки тела, движущейся равномерно по окружности, можно выразить через угловую скорость тела и радиус окружности:

Запишем все возможные расчётные формулы для центростремительного ускорения:

Мы рассмотрели два простейших движения абсолютно твёрдого тела — поступательное и вращательное. Однако любое сложное движение абсолютно твёрдого тела можно представить как сумму двух независимых движений: поступательного и вращательного.

На основании закона независимости движений можно описать сложное движение абсолютно твёрдого тела.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Кинематика — Физика, учебник для 10 класса — Класс!ная физика


источники:

http://lektsii.org/5-38.html

http://class-fizika.ru/10_a18.html