Уравнение клеро и лагранжа дифференциальные уравнения

Дифференциальное уравнение Клеро

Решение дифференциального уравнения Клеро

Рассмотрим уравнение Клеро:
(1)
Не трудно убедиться, что его общее решение имеет вид:
(2)

Действительно, поскольку – постоянная, то – тоже постоянная. Тогда дифференцируя (2) имеем:
;
(3) .
Подставляя (2) и (3) в (1), получаем тождество:
.

Особое решение дифференциального уравнения Клеро

Уравнение Клеро может иметь особое решение. Как известно, если общее решение дифференциального уравнения имеет вид:
,
то особое решение может получиться исключением из уравнений:
;
.

В нашем случае, решение (2) можно записать в виде:
.
Тогда
.
Тогда особое решение может получиться, исключением из уравнений:
;
.

Поскольку возможны посторонние решения, то после нахождения особого решения, необходимо проверить, удовлетворяет ли он исходному уравнению (1).

Пример

Решить уравнение:
(1.1)

Это уравнение Клеро. Его общее решение имеет вид:

Ищем особое решение. Перепишем общее решение в виде:
.
Дифференцируем по :

.
Тогда особое решение может получиться исключением из уравнений:
(1.2) ;
(1.3) .

Исключаем . Из уравнения (1.3) имеем:
(1.4) .
Возводим в квадрат и преобразуем:
;
;
. Отсюда следует, что .
Извлекаем квадратный корень:
(1.5) .
Поскольку мы возводили в квадрат, то, возможно, (1.5) содержит лишние решения, которые не удовлетворяют (1.4). Сейчас мы примем (1.5), а отсев лишних решений сделаем в самом конце.
Подставим (1.4) и (1.5) в (1.2):
.

Итак, особые решения имеют вид:
(1.6) .
Теперь сделаем проверку, чтобы выяснить, удовлетворяет ли исходному уравнению (1.1):
(1.1) .
Находим производную (1.6) и выполняем преобразования:

;
;
.
Подставляем в (1.1):
(1.7) .

При , . Уравнение (1.7) принимает вид:
.
Оно выполняется, если взять нижний знак:
.
То есть при , .

При , . Уравнение (1.7) принимает вид:
.
Оно выполняется, если взять верхний знак:
.
То есть при , .

Общее решение уравнения имеет вид:

При уравнение имеет особое решение:
.

При уравнение имеет особое решение:
.

Автор: Олег Одинцов . Опубликовано: 24-08-2012 Изменено: 10-04-2016

Дипломный проект – это исследование на научную тему

Среднее образование Андрей Андреевич Марков получил в 5-й петербургской гимназии. В этой гимназии, как и во всех других школах такого типа, процветали казенщина и формализм. Гимназистов заставляли выучивать наизусть тексты учебников, совершенно не обращая внимания на логическую сторону дела и понимание. Вот почему Марков недолюбливал гимназию. По многим предметам учился посредственно, получая иногда неудовлетворительные оценки.

( Алекси Клод Клеро (1713 – 1765) французский математик ин. поч. член Петерб. АН )

Определение. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно х и у, коэффициенты которого являются функциями от y .

Для нахождения общего решение применяется подстановка p = y .

Дифференцируя это уравнение, c учетом того, что , получаем:

Если решение этого (линейного относительно х) уравнения есть то общее решение уравнения Лагранжа может быть записано в виде:

[an error occurred while processing this directive]

Определение. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида:

Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа.

С учетом замены , уравнение принимает вид:

Это уравнение имеет два возможных решения:

или

В первом случае :

Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.

Во втором случае решение в параметрической форме выражается системой уравнений:

Исключая параметр р, получаем второе решение F ( x , y ) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.

Это решение будет являться особым интегралом.

Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.

«Арифметика» Магницкого как учебник была в школьном употреблении почти до середины XVIII века. По ней учился и М. В. Ломоносов. На могильном камне в память о Л. Ф. Магницком высечена эпитафия. Она рассказывает потомкам про самоотверженного труженика науки, человека большой души, верного сына своего отечества

Уравнение Клеро

Вы будете перенаправлены на Автор24

Дифференциальные уравнения первого порядка, не разрешенные относительно производной.

В общем виде дифференциальные уравнения первого порядка, не разрешенные относительно производной, записываются как $F\left(x,y,y’\right)=0$.

Основной метод решения таких дифференциальных уравнений состоит в том, чтобы выполнить некоторые преобразования, приводящие к уравнениям, разрешенным относительно производной. В дальнейшем могут применяться любые из известных методов, соответствующие тому, что в результате получилось: или уравнение с разделяющимися переменными, или однородное уравнение, или линейное уравнение и т.п.

Решить дифференциальное уравнение $y’^ <3>-y’^ <2>\cdot x+2\cdot y’=2\cdot x$.

Данное дифференциальное уравнение не разрешено относительно производной, поэтому известные методы для его решения применить не удается.

Поэтому выполняем следующие преобразования:

  • все слагаемые переносим в одну сторону $y’^ <3>-y’^ <2>\cdot x+2\cdot y’-2\cdot x=0$;
  • выражение слева разлагаем на множители $\left(y’^ <2>+2\right)\cdot \left(y’-x\right)=0$;
  • так как $y’^ <2>+2\ne 0$, то исходное уравнение эквивалентно $y’-x=0$.

Получено дифференциальное уравнение, допускающее непосредственное интегрирование: $\frac =x$.

Отсюда: $y=\int x\cdot dx $; $y=\frac > <2>+C$.

Решить дифференциальное уравнение

\[y’^ <2>-y’\cdot y+\cos x\cdot \left(y’-y\right)=0.\]

Данное дифференциальное уравнение не разрешено относительно производной, поэтому выполняем преобразования:

\[y’\cdot \left(y’-y\right)+\cos x\cdot \left(y’-y\right)=0;\] \[\left(y’-y\right)\cdot \left(y’+\cos x\right)=0.\]

Таким образом, данное дифференциальное уравнение эквивалентно двум другим: $y’-y=0$ и $y’+\cos x=0$.

Первое дифференциальное уравнение $y’-y=0$ решается посредством разделения переменных:

Второе дифференциальное уравнение $y’+\cos x=0$ допускает непосредственное интегрирование: $\frac =-\cos x$, откуда $y=-\sin x+C$.

Метод введения параметра

В ряде случаев дифференциальное уравнение вида $F\left(x,y,y’\right)=0$ не удается разрешить относительно производной. Но вполне возможно, что оно разрешимо или относительно $y$, или относительно $x$. Тогда мы получаем дифференциальное уравнение общего вида $y=u\left(x,y’\right)$ или $x=v\left(y,y’\right)$. Некоторые из дифференциальных уравнений подобного вида можно решить методом введения параметра.

Рассмотрим пример дифференциального уравнения вида $x=f\left(y’\right)$.

Решается введением параметра $\frac =p$.

В результате имеем решение данного дифференциального уравнения в параметрической форме, задаваемое следующими выражениями:

Готовые работы на аналогичную тему

Решить дифференциальное уравнение $8\cdot y’^ <3>=27\cdot x$.

Здесь мы имеем дифференциальное уравнение вида $x=f\left(y’\right)$, не разрешенное относительно производной.

Вводим параметр $\frac =p$ и записываем уравнение в виде $x=\frac<8> <27>\cdot p^ <3>$.

Здесь $f\left(p\right)=\frac<8> <27>\cdot p^ <3>$, откуда $\frac =\frac<8> <27>\cdot 3\cdot p^ <2>=\frac<8> <9>\cdot p^ <2>$.

Таким образом, решение данного дифференциального уравнения в параметрической форме задается следующими выражениями:

Отсюда получаем: $\left\<\begin <27>\cdot p^ <3>> \\ <9>\cdot \frac<1> <4>\cdot p^ <4>+C> \end\right. $ или $\left\<\begin <27>\cdot p^ <3>> \\ <9>\cdot p^ <4>+C> \end\right. $ — решение данного дифференциального уравнения в параметрической форме.

Параметр $p$ из этой системы уравнений можно исключить:

из $x=\frac<8> <27>\cdot p^ <3>$ получаем $p^ <3>=\frac<27> <8>\cdot x$ или $p=\frac<3> <2>\cdot x^<\frac<1> <3>> $;

подставляем в $y=\frac<2> <9>\cdot p^ <4>+C$ и получаем $y=\frac<2> <9>\cdot \left(\frac<3> <2>\cdot x^<\frac<1> <3>> \right)^ <4>+C$ или $y=\frac<9> <8>\cdot x^<\frac<4> <3>> +C$.

Таким образом, получено общее решение $y=\frac<9> <8>\cdot x^<\frac<4> <3>> +C$ данного дифференциального уравнения $8\cdot y’^ <3>=27\cdot x$ в явной форме.

Решение уравнения Клеро

Уравнение Клеро имеет вид $y=x\cdot y’+\psi \left(y’\right)$ и относится к более сложным видам дифференциальных уранений, не разрешенных относительно производной.

Введим параметр $\frac =p$, в результате чего имеем $y=x\cdot p+\psi \left(p\right)$.

После дифференцирования и простых преобразований получаем уравнение $\frac \cdot \left(x+\psi ‘\left(p\right)\right)=0$, которое распадается на два дифференциальных уравнения $\frac =0$ и $x+\psi ‘\left(p\right)=0$.

Из этого уравнения следует $p=C$. Отсюда получаем общее решение дифференциального уравнения Клеро $y=x\cdot C+\psi \left(C\right)$. Иначе говоря, общее решение можно получить из данного уравнения $y=x\cdot y’+\psi \left(y’\right)$ формальной заменой $y’$ на $C$.

Уравнение $x+\psi ‘\left(p\right)=0$.

Это уравнение дает особое решение в параметрической форме:

Оно представляет собой огибающую семейства кривых общего решения.

Решить дифференциальное уравнение $y=x\cdot y’+y’$.

Имеем уравнение Клеро, в котором $\psi \left(y’\right)=y’$.

Вводим параметр $\frac =p$ и получаем $y=x\cdot p+p$, где $\psi \left(p\right)=p$.

Формально заменив в данном дифференциальном уравнении $y’$ на $C$, получим его общее решение $y=x\cdot C+C$ или $y=C\cdot \left(x+1\right)$.

Находим особое решение.

Так как $\psi \left(p\right)=p$ и $\frac =1$, то особое решение в параметрической форме преобразуется к виду: $\left\<\begin \\ \end\right. $. Это значит, что особые решения для данного дифференциального уравнения отсутствуют.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 19 01 2022


источники:

http://matkb.ru/arf3/arf8.htm

http://spravochnick.ru/matematika/differencialnye_uravneniya/uravnenie_klero/