Уравнение константы равновесия гетерогенной химической реакции cuco3 cuo

Уравнение константы равновесия гетерогенной химической реакции cuco3 cuo

При равенстве энтальпийного и энтропийного факторов Δ Н = Т Δ S Δ G = 0 , что является термодинамическим условием химического равновесия. Химическое равновесие имеет динамический характер. Скорость реакции (число частиц образующихся в единицу времени в единице объема) в прямом направлении равна скорости реакции в обратном направлении. В этот момент концентрации исходных веществ и продуктов реакции не изменяются во времени и называются равновесными концентрациями. Они обозначаются символом вещества в квадратных скобках.

При равновесии химической реакции:

b B + d D = l L + m M

,

где p p , L , p pM , p p , D , p pB –равновесные парциальные давления веществ, а [ L ], [ M ],[ D ],[ B ] –равновесные концентрации веществ; l , m , d , b — показатели степени, равные стехиометрическим коэффициентам.

Отношения произведений парциальных давлений или концентраций получили названия констант химического равновесия соответственно К р или К с :

Эти уравнения являются математическими выражениями закона действующих масс, открытого норвежскими учеными К. Гульдбергом и П. Вааге в 1867 г.:

отношение произведения равновесных концентраций продуктов реакции в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, при Т = со nst , является величиной постоянной.

Например, для реакции синтеза аммиака:

закон действующих масс имеет вид:

Подставляя выражение константы в уравнения, получаем

Рассчитав величину Δ G 0 химической реакции, можно определить константу химического равновесия. Используя закон действующих масс, можно рассчитать равновесные концентрации реагирующих веществ.

Из вышеприведенного уравнения следует

Энергия Гиббса процесса имеет значение Δ G 0 = Δ H – T Δ S . Тогда

Если Δ Н и Δ S не зависят от температуры, то производная константы равновесия по температуре будет равна:

Это изобара равновесия. Она показывает, что константа равновесия экзотермической реакции уменьшается, а эндотермической реакции возрастает с повышением температуры. С увеличением абсолютного значения энтальпии реакции и уменьшением температуры чувствительность константы равновесия ( d ( ln K c )/ dT ) к изменению температуры повышается.

При изменении равновесных концентраций исходных веществ и продуктов реакции путем воздействия на систему происходит смещение химического равновесия. Если увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо. Если при внешнем воздействии увеличиваются концентрации исходных веществ, то говорят о смещении равновесия влево.

Характер смещения равновесия можно прогнозировать, применяя принцип французского ученого Ле Шателье :

если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то равновесие смещается в том направлении, которое ослабляет внешнее воздействие.

Принцип Ле Шателье следует из закона действующих масс. Если система находится при постоянной температуре, то константа равновесия при внешних воздействиях остается постоянной. Поэтому любое изменение равновесных концентраций веществ должно приводить к такому изменению равновесных концентраций других веществ, чтобы соблюдалось постоянство константы равновесия.

Рассмотрим процесс конверсии метана:

Константа равновесия этого процесса имеет вид:

1. Рассмотрим, как влияет изменение концентраций на смещение равновесия. При увеличении концентрации метана СН 4 равновесие системы нарушается, идет прямая реакция. Концентрации продуктов реакции СО 2 и Н2 увеличиваются, а концентрации Н2О уменьшается. Процесс будет протекать до тех пор, пока не установится новое равновесие. Новые равновесные концентрации компонентов будут такими, что константа равновесия не изменится. Если увеличить концентрацию СО 2 , то по принципу Ле Шателье равновесие сместится влево.

2. Если в результате реакции изменяется число молей газообразных веществ, то изменяется общее давление в системе и происходит смещение равновесия. В соответствии с принципом Ле Шателье увеличение общего давления вызывает смещение равновесия в сторону уменьшения числа молей газообразных веществ, т.е. в сторону уменьшения давления. Для рассматриваемой реакции увеличение давления должно смещать равновесие влево (слева- 3 моля, справа – 5 молей).

3. С увеличением температуры равновесие смещается в сторону эндотермических реакций, т.е. реакций протекающих с поглощением теплоты, понижение – в сторону экзотермических реакций.

Итак, принцип Ле Шателье позволяет создавать такие условия протекания реакции, которые обеспечивают максимальный выход продуктов реакции.

Химические реакции, протекающие на границе раздела фаз, называются гетерогенными химическими реакциями.

При равенстве скоростей прямой и обратной реакции наступает химическое равновесие в гетерогенной системе. Примерами гетерогенных процессов является пароводяная конверсия углерода, или восстановление оксидов металлов водородом:

Как и для любого равновесия, условием гетерогенного химического равновесия является равенство энергии Гиббса нулю, Δ G = 0 .

Как и в случае гомогенной химической реакции, константа гетерогенного равновесия равна отношению произведения равновесных концентраций (активностей) или парциальных давлений продуктов реакций к произведению равновесных концентраций (активностей) или парциальных давлений исходных веще ств в ст епенях, равных стехиометрическим коэффициентам в уравнении. Для реакции пароводяной конверсии углерода константа равновесия имеет вид:

для восстановления металла

Из приведенных выражений следует, что в уравнения констант гетерогенного химического равновесия не входят концентрации твердых веществ, участвующих в прямой и обратной реакциях. Это особенность гетерогенного химического равновесия.

Так как прямая и обратная реакции протекают на одной и той же поверхности раздела фаз, то площадь поверхности раздела фаз также не входит в уравнение константы химического равновесия.

Константа гетерогенного химического равновесия зависит от температуры. Она возрастает с увеличением температуры для эндотермической прямой реакции и уменьшается с увеличением температуры в случае экзотермической прямой реакции. Расчеты проводятся по тем же формулам, что и для гомогенных реакций.

Смещение равновесия гетерогенных реакций подчиняется принципу Ле Шателье . При повышении температуры оно смещается в сторону эндотермической реакции. При повышении давления или концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции, при повышении концентрации или давления продуктов реакции равновесие смещается в сторону обратной реакции. При повышении общего давления равновесие сдвигается в направлении уменьшения числа молекул газообразных веществ.

Твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.

Одно и то же вещество может при изменении температуры и давления переходить в различные агрегатные состояния. Эти переходы, осуществляемые без изменения химического состава, называются фазовыми переходами. Если рассматривается гетерогенная система, в которой нет химического воздействия, а имеются лишь фазовые переходы, то при постоянстве температуры и давления существует так называемое фазовое равновесие. Примерами фазового равновесия могут быть процессы плавления, кристаллизации, испарения, конденсации воды. Это равновесие характеризуется некоторым числом фаз, компонентов и числом степеней термодинамической свободы системы или числом степеней свободы.

Фаза – это однородная часть системы одинаковая по составу и свойствам, имеющая поверхность раздела, и которая может быть выделена из системы чисто механическим путем.

Так, система лед+вода имеет две фазы.

Компонентом называется химически однородная составная часть системы, которая может быть выделена из системы и может существовать вне ее .

Так, в растворе хлорида натрия компонентами являются вода и хлорид натрия, но ионы натрия и хлора не могут считаться компонентами.

Число степеней свободы определяется как число параметров системы (температура, давление), которые могут быть произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

У системы, состоящей лишь из газа, можно менять два параметра, третий система устанавливает произвольно сама.

Число степеней свободы определяется правилом фаз Дж .Г иббса (1876 г.):

число степеней свободы равновесной системы, на которую влияют только температура и давление, равно числу независимых компонентов системы минус число фаз плюс два:

где С – число степеней свободы; К – число компонентов; Ф – число фаз; 2 – число независимых параметров, например температура и давление.

Классификацию систем можно проводить: по числу фаз (однофазные, двухфазные и т.д.); по числу компонентов системы (однокомпонентные, двухкомпонентные и т.д.); по числу степеней свободы – инвариантные (С = 0), моновариантные (С = 1), дивариантные (С = 2) и т. д. Диаграммы, по которым можно определить условия устойчивости фаз и фазового равновесия, называются фазовыми диаграммами или диаграммами состояния. Для однокомпонентных систем правило фаз имеет вид

Примером однокомпонентной системы служит диаграмма состояния воды в координатах давление – температура . ( р ис.15) Области, находящиеся между кривыми, являются однофазными областями (С = 2). Кривые соответствуют условиям равновесия между двумя фазами (С = 1). Кривая ОС отражает равновесие процесса кипения. Кривая кипения оканчивается точкой С , которая называется критической. При температуре выше этой точки невозможно получить жидкую воду ни при каком давлении. Вода, при температурах выше критической и давлении, выше критического, переходит в особое состояние, называемое сверхкритическим (СК). Свойства веществ в этом состоянии находятся между свойствами газа и жидкости. Например, вещества в сверхкритическом состоянии имеют очень низкую вязкость, высокую диффузионную активность и способность растворять многие вещества в твердом, жидком или газообразном видах.

Кривая ОВ – это кривая плавления. При увеличении давления температура плавления немного уменьшается, что обусловлено разрывом водородных связей при повышении давления.

Кривая ОА отражает процесс сублимации, т.е. перехода из твердого состояния в газообразное , минуя жидкое. Кривая ОД описывает поведение воды в неустойчивом (метастабильном) состоянии. Явление образования метастабильного состояния получило название переохлаждения.

В точке О существует равновесие одновременно между тремя фазами. Она называется тройной точкой воды, и для нее давление равно 610 Па и температура 273,15 К.

Процесс поглощения одного вещества поверхностью или объемом другого называется сорбцией.

Вещество, частицы которого поглощаются (газ, жидкость или растворенный компонент), называют сорбатом , а поглотитель (чаще твердое тело) – сорбентом .

Сорбционные процессы играют большую роль в технике. Например, для поддержания высокого вакуума в действующем электровакуумном приборе применяют геттеры – специально изготовленные материалы, которые активно поглощают остаточные газы. В качестве геттеров используют компактные ( Zr , Ta , Nb и др.) или распыленные ( Ba , Ca , Sr ) металлы. Сорбционные процессы широко используют в металлургии при обогащении руд (флотация), в энергетике при водоподготовке (ионный обмен) и др.

При контакте сорбент поглощает сорбат поверхностью или объемом. Сорбция только поверхностью называется адсорбцией , а только объемом – абсорбцией . Процесс обратный адсорбции называется десорбцией.

Адсорбция связана с особым энергетическим состоянием частиц на поверхности адсорбента в отличие от энергетического состояния частиц в его объеме . Частицы во внутренних слоях вещества испытывают одинаковое притяжение со стороны окружающих частиц по всем направлениям.

Частицы же поверхностного слоя подвергаются неодинаковому притяжению со стороны внутренних слоев вещества и со стороны частиц граничащей с веществом посторонней фазы. Поэтому частицы поверхностного слоя адсорбента обладают свободной поверхностной энергией , которая может быть снижена за счет возникновения абсорбционных взаимодействий с молекулами, атомами и ионами адсорбата .

Для границы раздела фаз жидкость – газ (пар) обычно используют термин «удельная (на 1 м 2 ) поверхностная энергия», называемая поверхностным натяжением , которая равно работе образования единицы площади поверхности раздела фаз (Дж/м 2 ).

Поверхностная энергия – это энергия Гиббса Δ G образования поверхности. Она равна произведению удельной поверхностной энергии σ на площадь поверхности раздела фаз S :

Удельная поверхностная энергия зависит от природы вещества. Чем выше энергия взаимодействия между частицами вещества, тем выше удельная поверхностная энергия. С увеличением температуры удельная поверхностная энергия уменьшается.

В зависимости от природы сил взаимодействия адсорбирующего вещества с адсорбентом различают физическую и химическую (хемосорбцию) адсорбцию. В первом случае при адсорбции возникают вандерваальсовы взаимодействия, во втором – химические связи.

Физическая адсорбция характеризуется невысоким тепловым эффектом и обратимостью.

Хемосорбция протекает необратимо. Тепловой эффект ее близок к тепловому эффекту химических реакций.

Поскольку адсорбция протекает самопроизвольно, то энергия Гиббса имеет отрицательное значение

Тепловой эффект адсорбции имеет также отрицательное значение

Если адсорбция протекает из газовой, жидкой фазы на поверхность жидкой или твердой фазы, то в процессе адсорбции происходит упорядочение адсорбированных частиц и энтропия системы уменьшается, т.е.

Отсюда следует, что с увеличением температуры энергия Гиббса системы возрастает, и при некоторой температуре Т р наступает равновесие, в это время скорость адсорбции равна скорости десорбции. При этом

При увеличении температуры адсорбция уменьшается. То есть вещество можно адсорбировать при невысокой температуре и десорбировать при более высокой.

Абсорбционное равновесие подвижно и может быть смещено в ту или иную сторону в соответствии с принципом Ле Шателье .

Количественно адсорбцию можно выражать в молях адсорбата на единицу площади адсорбента, моль/м 2 . Адсорбция зависит от природы адсорбента и адсорбата , температуры и концентрации или давления адсорбата . Кривую зависимости величины адсорбции Г от равновесных концентраций С или давлений р адсорбата при постоянной температуре Т называют изотермой адсорбции :

Г = f ( C ) или Г = f ( p ) при Т = const .

Изотерма адсорбции на однородной поверхности адсорбента была выведена американским ученым Дж .Л энгмюром . При выводе уравнения было сделано предположение, что поверхность адсорбента однородна и при максимальном заполнении образуется мономолекулярный слой. В этом случае уравнение имеет вид:

где Г — адсорбция при максимальном заполнении;

с – равновесная концентрация адсорбата ;

р – равновесное давление адсорбата ;

К а – константа равновесия процесса адсорбции.

Графически изотерма адсорбции имеет вид, приведенный на рис. 16

Изотерма Лэнгмюра редко соблюдается в реальности, поэтому предложены другие уравнения.

В 1906 г. Фрейндлих предложил эмпирическое уравнение изотермы. Уравнение Фрейндлиха имеет вид:

где К ф и n – постоянные.

При адсорбции изменяются свойства поверхностного слоя, т.е. поверхностное натяжение. Адсорбирующиеся вещества могут понижать поверхностное натяжение (это поверхностно — активные вещества – ПАВ), повышать поверхностное натяжение (поверхностно — инактивные вещества) и не влиять на поверхностное натяжение (поверхностно — неактивные вещества).

Широкое применение нашли лишь ПАВ. Способностью уменьшать поверхностное натяжение, т.е. поверхностной активностью обладают молекулы вещества, имеющие неполярные гидрофобные углеводородные части («хвосты») и полярные гидрофильные группы («головы»). К полярным принадлежат группы

К ПАВ принадлежит натриевая соль стеариновой кислоты, входящей в состав мыла

Поверхностная активность обусловлена гидрофобной частью молекул ПАВ («хвостами»), которые выталкиваются из полярного растворителя, в то время как гидрофильные группы («головы») удерживают молекулы ПАВ на границе раздела фаз. Таким образом, молекулы ПАВ адсорбируются на границе раздела фаз, причем гидрофобная их часть обращена в сторону газа или неполярной жидкости, гидрофильная часть – в сторону полярной жидкости или твердого гидрофильного адсорбента.

Концентрация ПАВ в поверхностном слое на несколько порядков выше, чем в объеме жидкости, поэтому даже при малом содержании ПАВ они значительно снижают поверхностное натяжение. Поверхностная активность ПАВ возрастает с увеличением длины углеводородной части молекул и их концентрации.

Изменение поверхностного натяжения под действием ПАВ влияет на смачиваемость твердых тел жидкостью. Этот эффект используется для очистки тканей (стирка, чистка) или металлов от жировых загрязнений применением ПАВ, при адсорбции которых на границе раздела фаз вода – жир, вода – твердое тело изменяется поверхностное натяжение воды на этих границах, что приводит к переходу жира в виде капель в водную среду.

Применение ПАВ позволяет разделять пустую породу и руду при флотации руд. Пустая порода смачивается водой, содержащей ПАВ, а руда поднимается вверх с пузырьками воздуха, продуваемого через раздробленную породу в воде.

MgO(к) + CO2(г) MgCO3(к) ΔH Готовое решение: Заказ №8633

Тип работы: Задача

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Предмет: Химия

Дата выполнения: 22.09.2020

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

MgO (к) + CO 2 (г) MgCO 3 (к)

ΔH

В гетерогенной системе установилось равновесие. Напишите выражение для константы равновесия. Дайте обосно­ванные ответы на вопросы: а) как уменьшение давления отразится на состоянии равновесия; б) в каком направлении сместится рав­новесие при уменьшении температуры; в) как и во сколько раз из­менится скорость прямой реакции при уменьшении давления в системе в два раза?

Решение :

Выражение константы равновесия:

Направление смещения равновесия определяется принципом Ле Шателье: если на систему, находящуюся в равновесии, оказывать внешнее воздействие, то равновесие смещается в направлении, которое ослабляет эффект внешнего воздействия

Изучите химию на странице ➔ решение заданий и задач по химии.
Похожие готовые решения:
  • Номер задачи 94 A m, г 95 V, л ρ, KOH 718 2,0 1,27 Водный раствор содержит массу m вещества А в объе¬ме V. Плотность раствора ρ. Вычислите массовую долю (в %)
  • Si + O2 + NaOH → Na2SiO3 + H2O HNO3 + Bi → NO + Bi(NO3)3 + H2O Окислительно-восстановительные реакции протекают по приведенным схемам. Для каждой реакции укажите: а) окислитель и восстановитель
  • Элемент A l 35 Br 79 1 1). Один из изотопов элемента имеет массовое число A. Каков заряд ядра его атома? Сколько электронов находится на всех электронных оболочках атома?
  • Реакция горения бензола выражается термохимическим уравнением: C6H6(ж) + 7½O2(г) = 6CO2(г) + 3H2O(г); ΔH = ? Вычислите тепловой эффект

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Вычисление константы равновесия системы и исходных концентраций реагирующих веществ

Константа равновесия химической реакции

Задание 128.
В гомогенной системе СО + Сl2 ↔ СОСl2 равновесные концентрации реагирующих веществ (моль/л): [СО] = 0,2; [Сl2] = 0,3; [СОСl2] = 1,2. Вычислите константу равновесия системы и исходные концентрации Сl2 и СО. Ответ:
К р = 20; [С12]исх = 1,5 молы/л; [СO]исх = 1.4 молы/л.
Решение:
Уравнение реакции имеет вид:

Выражение константы равновесия данной реакции имеет вид:

Подставляя в него данные задачи, получим:

Кр = 1,2/(0,2 . 0,3) = 20.

Для нахождения исходных концентраций веществ СО и Cl2 учтём, что, согласно уравнению реакции, из 1 моль Со и 1 моль Cl2 образуется 1 моль COCl2. Поскольку по условию задачи в каждом литре системы образовалось 1,2 моль COCl2, то при этом было израсходовано 1,2 моль СО и 1,2 моль Cl2. Таким образом, искомые исходные концентрации равны:

Ответ: К = 20; [С12]исх = 1,5 молы/л; [СO]исх = 1.4 молы/л.

Задание 129.
В гомогенной системе А + 2В = С равновесные концентрации реагирующих газов (молы/л): [А] = 0,06; [В] = 0,12; [С] = = 0,216. Вычислите константу равновесия системы и исходные концентрации веществ А и В. Ответ: К = 250; [А] = 0,276 моль/л; [В] = 0,552 моль/л.
Решение:
Уравнение реакции имеет вид:

Выражение константы равновесия данной реакции имеет вид:

Подставляя в него данные задачи, получим:

Кр = 0,216/[0,06 . (0,12)2] = 250.

Для нахождения исходных концентраций веществ А и В учтём, что, согласно уравнению реакции, из 1 моль А и 2 моль В образуется 1 моль C. Поскольку по условию задачи в каждом литре системы образовалось 0,216 моль C, то при этом было израсходовано 0,216 моль А и 0,432 моль В.
Таким образом, искомые исходные концентрации равны:

[А]исх = 0,06 + 0,216 = 0,276 молы/л;
[В]исх = 0,12 + 0,432 = 0,552 молы/л.

Ответ: Кр = 250; [А] = 0,276 моль/л; [В] = 0,552 моль/л.

Задание 130.
В гомогенной газовой системе А + В С ↔ С + D равновесие установилось при концентрациях (моль/л): [В] = 0,05 и [С] 0,02. Константа равновесия системы равна 0,04. Вычислите исходные концентрации веществ А и В. Ответ: [А] = 0,22 моль/л; [В] = =0,07 молы/л.

Решение:
Уравнение реакции имеет вид:

Обозначим исходную концентрацию вещества А через х. По уравнению реакции в результате взаимодействия веществ А и В образуются одинаковые количества вещества С и D, т. е. равновесные концентрации продуктов будут равны: [С] = [D] = 0,02 моль/л. Подставляем равновесные концентрации веществ в выражение константы равновесия:

Поскольку по условию задачи в каждом литре системы образовалось 0,02 моль веществ C и D, то при этом было израсходовано 0,02 моль А и 0,02 моль В. Таким образом, искомые исходные концентрации равны:

[А]исх = 0,2 + 0,02 = 0,22 молы/л;
[В]исх = 0,05 + 0,02 = 0,07 молы/л.

Ответ: [А] = 0,22 моль/л; [В] = =0,07 молы/л.

Скорость реакции

Задание 131.
Константа скорости реакции разложения N2O, протекающей по уравнению 2N 2 O = 2N 2 + О 2, равна 5 . 10 -4 . Начальная концентрация N2О равна 6,0 моль/л. Вычислите начальную скорость реакции и её скорость, когда разложится 50% N2O. Ответ: 1,8 . 10-2; 4,5 . 10 -3 .
Решение:
Уравнение реакции имеет вид:

Обозначим начальную концентрацию исходного вещества: [N2O] = a. Согласно закону действующих масс, скорость прямой реакции до изменения концентрации N2O равна:

Vпр = ka2 = 5 . 10 -4 . (6) 2 = 1,8 . 10 -2 .

После разложения 50% N2O, концентрация его будет равна 3 моль/л (50 . 6/100 = 3). При новой концентрации N2O скорость прямой реакции ( пр) равна:

Ответ: 1,8 . 10 -2 ; 4,5 . 10 -3 .

Задание 132.
Напишите выражение для константы равновесия гетерогенной системы
СО2 + С ↔ 2СО. Как изменится скорость прямой реакции образования СО, если концентрацию СО2 уменьшить в четыре раза? Как следует изменить давление, чтобы повысить выход СО?
Решение:
Уравнение реакции имеет вид:

При равновесии скорости прямой и обратной реакции равны, а отношение констант этих скоростей постоянно и называется константой равновесия системы:

При гетерогенной реакции учитываются только концентрации газообразных веществ. Обозначим концентрацию исходного вещества: [CO2] = a. Согласно закону действующих масс, скорость прямой реакции до изменения концентрации равна: Vпр = ka. После уменьшения концентрации СО2 в 4 раза её значение можно записать так: [CO2] = 1/4a. При новой концентрации СО2 скорость прямой реакции пр будет равна:

Следовательно, при уменьшении концентрации СО2 в 4 раза скорость прямой реакции уменьшится в 4 раза.Так как в данной системе происходит увеличение объёма (из 1 моль газообразного исходного вещества образуется
2 моль газообразного продукта реакции), то для смещения равновесия в данной системе в сторону прямой реакции – образовании СО надо уменьшить давление в системе.

Задание 133.
Напишите выражение для константы равновесия гетерогенной системы

С + Н2О (г) ↔ СО + Н2. Как следует изменить концентрацию и давление, чтобы сместить равновесие в сторону обратной реакции — образования водяных паров?
Решение:
Уравнение реакции имеет вид:

При равновесии скорости прямой и обратной реакции равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы. В выражении для гетерогенной системы концентрации твёрдых веществ не указываются. Выражение константы равновесия для данной реакции:

а) Смещение равновесия в сторону образования водяных паров можно достигнуть увеличением концентрации СО или Н2, так и уменьшением концентрации паров воды, так как, согласно принципу Ле Шателье, равновесие в системе сместится в сторону той реакции, которая ослабляет это воздействие.

б) Так как в данной системе из углерода и водяных паров образуются углекислый газ и водород, т. е. в данной системе увеличивается объём (из 1 моль газа образуется 2 моль газов), то для смещения равновесия в сторону образования паров воды надо увеличить давление.

Равновесие гомогенной системы

Задание 134.
Равновесие гомогенной системы
4НСI (г) + О 2 ↔ 2Н2О (г) + 2Сl2 (г)
установилось при следующих концентрациях реагирующих веществ (молы/л): [Н2O]P = 0,14; [С12]P = 0,14; [НС1]P = 0,20; [O2]р = О,32. Вычислите исходные концентрации хлороводорода и кислорода. Ответ: [НС1]исх = 0,48 моль/л; [О2]исх = 0,39 моль/л.
Решение:
Уравнение реакции имеет вид:

Для нахождения исходных концентраций хлороводорода и кислорода учтём, что согласно уравнению реакции из 4 моль HCl 1 моль О2 образуется 2 моль Н2О и 2 моль Cl2. Поскольку по условию задачи в каждом литре системы образовалось 0,14 моль Н2О и 0,14 моль Cl2, то при этом было израсходовано 0,14 . 4/2 = 0,28 моль HCl и ,
14 . 1/2 = 0,07 моль Cl2. Таким образом, искомые концентрации HCl и Cl2 равны:

Ответ: [НС1]исх = 0,48 моль/л; [О2]исх = 0,39 моль/л.


источники:

http://natalibrilenova.ru/mgok—co2g-mgco3k-h—0-v-geterogennoj-sisteme-ustanovilos-ravnovesie-napishite-vyirazhenie-dlya-konstantyi-ravnovesiya-dajte-obosnovannyie-otvetyi-na-voprosyi/

http://buzani.ru/zadachi/khimiya-shimanovich/919-skororst-reaktsii-konstanty-ravnovesiya-zadacha-109