Уравнение кривой нормального распределения имеет вид

Нормальное распределение (Гаусса) в Excel

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

ну и сама переменная x, для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии ( σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:


Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0, т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен).

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ( z ) или вероятности Φ(z) по нормированным данным (z).

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ( z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z

Уравнение кривой нормального распределения

Необходимо отметить, что форма кривой нормального распределения полностью определяется величиной s.

у – плотность вероятности

Чем меньше величина s, тем более остроконечную форму имеет кривая нормального распределения. s1

Тогда вероятностный процент брака в сторону уменьшения значения контролируемого параметра определится как Pz1=0,5(1-Ф(z1)) 100%.

Аналогично определяется относительное отклонение в сторону увеличения параметра

По расположению кривой относительно допуска и т.д. можно определить категорию брака: исправимый или неисправимый.

вал мм

Псл=6σ=6 . 0,03 мм → работа без брака невозможна

б) определить процент брака при настройке без ошибки (ΔС=0)

в) определить средний диаметр, на который нужно настроить станок, чтобы исключить появление неисправимого брака, определить процент исправимого брака

необходимо иметь отклонение в сторону уменьшения диаметра вала!

мм – условие работы без брака

мм

мм

F(z2)=0,4772 – половинное значение

нормальное распределение с σ=0,025 мм

вершина кривой распределения смещена на ΔС=0,03 мм

Определить процент годных деталей

Для оценки точности технологических процессов применяются не только кривые нормального распределения.

Если при выполнении какой-либо операции имеет место ярко выраженная систематическая переменная погрешность (размерный износ инструмента), то её оценивают с помощью кривой равной вероятности

Если же при выполнении операции имеет место совместное действие, скажем, размерного износа и увеличение силы резания в процессе затупления инструмента, распределение происходит по закону Симпсона или треугольника

Оценка точности с помощью кривых распределения является универсальным методом, то есть он применяется для оценки различных процессов. Использование данного метода позволяет дать оценку точности физического процесса и ее соответствие заданным допускам, сравнить процессы по точности, выявить стабильность и влияние факторов.

Недостатком метода является его направленность в прошлое, то есть точность оценивается уже после изготовления партии деталей. Не учитывается последовательность обработки детали, влияние и постоянных, и переменных погрешностей выявляется как рассеивание размеров. Метод исключает возможность оперативного вмешательства в ТП с целью повышения точности, а также не выявляет физической сущности факторов, влияющих на точность.

С точки зрения увеличения точности процесса он недостаточно пригоден.

В крупносерийном и массовом производстве для оценки точности применяют точечные и точностные диаграммы.

На точечной диаграмме отмечается контролируемый параметр деталей после выполнения конкретной операции. Для сокращения длины диаграммы иногда контролируют и проставляют размеры для группы деталей. В некоторых случаях отмечается средний параметр группы деталей.

Псл – случайная сумманрная погрешность параметра

m – количество элементов в выборке

Точечные диаграммы достаточно просто преобразуются в точностные. На точностных диаграммах проставляется среднее значение параметра группы деталей, среднеквадратическое отклонение (в плюс и в минус), а также максимальное и минимальное значение контролируемого параметра в данной группе деталей. По поведению средней величины и изменению величины поля рассеивания судят об устойчивости и стабильности ТП. Считается, что ТП стабильный и устойчивый, если амплитуда колебания W и хср не превышает (0,4-0,5)Т допуска на данный параметр, то есть ТП может быть устойчивым и стабильным, неустойчивым и стабильным и т.д.

Смещение центра группирования погрешностей говорит о нестабильности процесса.

— уравнение, описывающее систематическую погрешность.

В более общем случае наряду со смещением центра группирования погрешности происходит изменение распределения.

σ – характеристика кривой

Считается,что техпроцесс стабилен и устойчив, если амплитуда колебаний средних значений и поля рассеивания не превышают (0,4…0,5)Т.

Управление эффективностью: кривая нормального распределения

Сегодня многие консультанты и специалисты в сфере HRM говорят об управлении эффективностью, дают различные советы и делают выводы «космического масштаба» о том, как ее повысить. Но какова суть эффективности, ее природа? Каким правилам и законам она подчиняется?

Чем более глубокими теоретическими знаниями мы обладаем, тем более совершенна наша практическая деятельность. Действительно, управлять эффективностью можно только в том случае, если мы глубоко понимаем природу этого феномена.

Эффективность — это результативность процесса, операции, проекта. Она определяется как отношение полученного результата (достигнутого эффекта) к затратам — расходам на его получение. Для оценки этого параметра деятельности используется специальный математический аппарат (коэффициенты, формулы, методы расчета и т. д.). Использование метрик эффективности позволяет эйчарам разработать определенный алгоритм собственной работы.

Эффективность деятельности компании в целом зависит от эффективности работы каждого ее сотрудника. В крупном коллективе работают разные люди — естественно, они демонстрируют различную результативность. Количество людей с высокой/ средней/ низкой результативностью труда — математики используют термин «распределение» — подчиняется закономерности, которую называют кривой нормального распределения.

Закон нормального распределения сформулировал немецкий математик Фридрих Гаусс еще в начале XIX века. Суть его состоит в том, что заметные отклонения встречаются значительно реже, чем средние величины. Закон Гаусса начинает действовать в группе: чем больше элементов, тем нагляднее проявляется «нормальность» распределения (шире разброс крайних значений и более выражен «горб» средних).

На рисунке 1 изображена кривая нормального распределения — гауссиана. Вся живая и неживая природа подчиняется этому закону. Например, в каждом классе любой школы (и во всех школах мира) подавляющее большинство составляют «середнячки», часть учеников учится немного лучше и немного хуже, и несколько процентов детей — очень способны (еще реже — одарены, талантливы) и столько же — плохо обучаемы и не имеют никакой мотивации к учебе.

Рис. 1. Кривая нормального распределения Гаусса

Но констатации факта, что наиболее эффективных сотрудников (в любом коллективе!) примерно столько же, сколько низкопроизводительных, а большая часть работников — «середнячки», недостаточно для того, чтобы управлять результативностью.

Следствия закона нормального распределения могут показаться парадоксальными: в любом коллективе будут лучшие и худшие. Всегда! Иначе теряет смысл само определение «лучший»… Это не значит, что если уволить лодырей, то «разленятся» другие сотрудники, скорее — повысятся критерии оценки эффективности для этого коллектива. Любая система стремится к равновесию, и смысл управления в том, чтобы устанавливать это равновесие на все более высоком «базовом» уровне…

Если мы посмотрим на результаты оценки сотрудников реальной компании (по критерию эффективности в достижении поставленных целей), то увидим, что они «выстраиваются» в гауссиану (рис. 2): в группу III входят 5% самых результативных сотрудников, в группу I — 5% самых неэффективных, а остальные (группа II) демонстрируют средние показатели.

Рис. 2. Распределение сотрудников компании по показателю «эффективность» описывается кривой нормального распределения

Далее рассмотрим графики на рисунке 3. Отсутствие «передовиков производства» (вариант на рис. 3а), «отстающих» (рис. 3б) или и тех и других одновременно (рис. 3в) — утопия. Если статистика противоречит закону Гаусса, значит, у компании есть серьезные проблемы с организацией труда, а также неудачно выстроена система оценки результативности деятельности. Скорее всего, работа на конкретных рабочих местах плохо описана, неправильно пронормированна и неэффективно стимулируется (то есть нормы выработки, рабочие задания завышены или занижены, а система оплаты не мотивирует к тому, чтобы люди прикладывали больше усилий). Возможно также, что в этих компаниях неудачно выбрана система показателей для оценки результатов (например, оценивается качество продукции, а реально оплачиваются объемы ее изготовления) и/или есть серьезные управленческие ошибки с постановкой целей и определением приоритетности задач.

Рис 3. Графики распределения сотрудников компании по показателю «эффективность»

Особый практический интерес (исходя из собственного опыта) представляет ситуация «все хорошие» (рис. 3в). Когда дело доходит до периодической оценки сотрудников, многие линейные менеджеры подходят к подчиненным «уравнительно», мотивируя свои решения «благими намерениями»: чтобы не осложнять отношения в коллективе, не провоцировать конфликты. Дело не только в том, что они не хотят задуматься над тем, что каждый человек уникален по своему, и работать одинаково «хорошо» все не могут. Это проблема качества управления: справедливая оценка ставит перед сотрудниками реалистичные цели, она сама по себе мотивирует людей, а значит, работает на повышение общей эффективности подразделения и компании в целом.

Впервые с подобным подходом я столкнулся при внедрении периодической системы оценки деятельности сотрудников одного из предприятий тяжелой промышленности: начальник одного из цехов утверждал, что у него все работают хорошо, и он не может кого-либо выделить. О каком развитии, повышении эффективности может идти речь, если руководитель не может отличить плохую работу от хорошей, а хорошую от отличной? Он сам лишает своих подчиненных возможности развиваться (и, как следствие, препятствует повышению эффективности их труда).

Нередко затратив огромные средства на внедрение системы управления эффективностью, компании не получают ожидаемого результата… Вывод один: пока линейные менеджеры не будут правильно применять инструменты и методы управления сотрудниками, которые им предлагают коллеги из службы по управлению персоналом, явного сдвига в повышении эффективности деятельности организации не будет.

Вернемся к закону Гаусса. Что можно сделать для повышения эффективности компании? Как перевести сотрудников из разряда лодырей хотя бы в разряд «середнячков»? Я предлагаю вниманию коллег проверенные на практике рекомендации:

Работать нужно со всем персоналом, повышая результативность каждого. Успеха можно добиться только в масштабах всей компании. Если сосредотачивать внимание на «воспитании» самых неэффективных работников или отдавать предпочтение лишь самым успешным, то в результате можно повысить только их личную эффективность. Затраты ресурсов и усилий в данном направлении приведут к частичным изменениям (рис. 4).

Рис. 4. Работа только с одной категорией сотрудников приведет к частичным изменениям

  1. Цель внедрения системы управления эффективностью — увеличить «норму для середнячков». Если менеджеры будут уделять внимание всему коллективу, то в итоге сохранятся и передовики, и относительно «отстающие» (для данного подразделения на этом этапе развития), но показатели результативности, которых достигают средние работники, — повысятся.

Отражение этого прогресса мы видим на рисунке 5: кривая распределения показателей эффективности сотрудников сместилась вправо по оси Х. По-прежнему 5% работников показывают лучшие в своей группе результаты, 5% — худшие, а подавляющее большинство, как и раньше, демонстрирует средние показатели. Но теперь:

самые слабые сотрудники работают на уровне «середнячков»;

«средние» уже подтянулись до уровня лидеров предыдущего периода;

лидеры достигли суперэффективности.

Рис. 5. Результат: повышение эффективности всей компании

Так все — каждый сотрудник, подразделение и компания в целом — выходят на новый уровень развития.

«Сдвинуть гору» с места, конечно, очень и очень непросто. Этого можно добиться, систематически проводя грамотную управленческую работу со всем персоналом, а не только с лучшими (кадровым резервом) или худшими. Для каждой группы сотрудников следует разрабатывать программы повышения эффективности. Непременное условие — они должны охватывать весь коллектив, тогда закон Гаусса будет работать на компанию!

Хочу также акцентировать внимание читателей на том, что управление эффективностью компании — это не разовое событие или мероприятие, а процесс, ежедневный кропотливый труд линейных руководителей и эйчаров. Поэтому топ-менеджеры каждой компании, перед тем как стать на стезю управления эффективностью, должны ответить на вопрос: «Готовы ли мы инвестировать в эффективность? Готовы ли линейные менеджеры культивировать в своих подразделениях стремление к эффективности? Готовы ли рядовые сотрудники постоянно участвовать в гонке за повышение эффективности? Готов ли весь коллектив вступить в борьбу за результативность, буквально — с мировой энтропией*?» Если ответ положительный — дерзайте!

Рост эффективности каждого отдельного сотрудника повышает эффективность подразделения, компании в целом. Как только количество высокорезультативных работников достигает критической отметки, наблюдается своего рода «квантовый скачок» повышения эффективности всей компании. Переход на качественно новый уровень происходит в соответствии с законами диалектики, которые сформулировал великий немецкий философ Фридрих Гегель. Задача менеджеров — по возможности приблизить момент «перехода количества в качество».

Этот закон замечателен своей универсальностью: ему подчиняются не только процессы развития галактик и человеческих цивилизаций, но и профессиональный рост отдельного специалиста (например, эйчара). Здесь важно наблюдать за собственной результативностью. Анализируйте ее: ежедневные результаты скажут вам об эффективности больше, чем тысяча книг, лекций, разговоров, за которыми не следует действий.
_________
* Энтропия (от греч. поворот, превращение) — 1) в теории информации: величина, характеризующая степень неопределенности системы; 2) в теории систем: величина, обратная уровню организации системы.


источники:

http://zdamsam.ru/a50105.html

http://hr-portal.ru/article/upravlenie-effektivnostyu-krivaya-normalnogo-raspredeleniya