Уравнение лагранжа 2 рода теоретическая механика яблонский

Теоретическая механика: Решебник Яблонского:
Аналитическая механика (Д14, Д15, Д16, Д17, Д18, Д19, Д20, Д21, Д22)

Бесплатный онлайн решебник Яблонского. Выберите задание и номер варианта для просмотра решения.

Задание Д.14. Применение принципа возможных перемещений к решению задач о равновесии сил, приложенных к механической системе с одной степенью свободы

Схемы механизмов, находящихся под действием взаимно уравновешивающихся сил, показаны на рис. 171–173, а необходимые данные приведены в табл. 50.

Применяя принцип возможных перемещений и пренебрегая силами сопротивления, определить величину, указанную в предпоследней графе табл. 50.

Примечание. Механизмы в вариантах 3, 6, 10, 14, 16, 18, 19, 25 и 30 расположены в вертикальной плоскости, а остальные – в горизонтальной.

Варианты с решением: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (решено 100%)

Задание Д.15. Применение принципа возможных перемещений к определению реакций опор составной конструкции

Применяя принцип возможных перемещений, определить реакции опор составной конструкции.

Схемы конструкций показаны на рис. 176–178, а необходимые для решения данные приведены в табл. 51. На рисунках все размеры указаны в метрах.

Варианты с решением: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (решено 100%)

Задание Д.16. Применение принципа Даламбера к определению реакций связей

Определить реакции внешних связей механической системы:

а) в произвольный момент времени – для вариантов 4, 5, 10, 12–18, 21–30 (рис. 185–187);

б) в момент времени t=t1 – для вариантов 1, 8, 9, 11, 20;

в) в тот момент времени, когда угол поворота φ=φ1, – для вариантов 2, 3, 6, 7;

г) в положении, показанном на чертеже для вариантов 15 и 19.

На схемах (рис. 185–187) плоскость xOy (xAy) горизонтальна, плоскость yOz (yAz) вертикальна. Необходимые для решения данные приведены в табл. 52, в которой ω – угловая скорость, φ0 и ω0 – значения угла поворота и угловой скорости в начальный момент времени.

Примечания: 1. Вращающиеся тела, для которых не указан радиус инерции, рассматривать как тонкие однородные стержни (варианты 1–5, 11–15, 18, 19, 23, 24, 29, 30) или сплошные однородные диски (варианты 6–9, 16, 20, 22, 28); в варианте 10 тело 2 рассматривать как материальную точку.

2. На схемах 1, 8, 9, 11, 16, 17, 20–22 указаны внешние моменты M.

Варианты с решением: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (решено 100%)

Задание Д.17. Определение реакций опор при вращении твердого тела вокруг неподвижной оси

Однородное тело Q массой m вращается вокруг неподвижной вертикальной оси z под действием пары сил с моментом M, расположенной в горизонтальной плоскости. Определить реакции подпятника A и подшипника B в момент времени t=t1, считая, что в этот момент плоскость материальной симметрии тела совпадает с плоскостью yAz. Начальная угловая скорость ω0=0. Массой стержней, связанных с телом Q, пренебречь.

Варианты задания показаны на рис. 189–191, необходимые данные – в табл. 53.

Варианты с решением: 1 2 3 4 5 6 7 8 10 11 12 14 15 16 17 18 20 21 22 28 29 (решено 70%)

Задание Д.19. Применение общего уравнения динамики к исследованию движения механической системы с одной степенью свободы

Для заданной механической системы определить ускорения грузов и натяжения в ветвях нитей, к которым прикреплены грузы. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.

Варианты механических систем показаны на рис. 198–200, а необходимые для решения данные приведены в табл. 55.

Блоки и катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.

Примечания: 1. Радиусы инерции даны относительно центральных осей, перпендикулярных плоскости чертежа (рис. 198–200).

2. Коэффициент трения принимать одинаковым как при скольжении тела по плоскости, так и при торможении колодкой (варианты 9–12).

Варианты с решением: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (решено 100%)

Задание Д.20. Применение уравнений Лагранжа II рода к определению сил и моментов, обеспечивающих программное движение манипулятора

Манипулятор (рис. 205–207), состоящий из звеньев 1, 2 и захвата D, приводится в движение приводами A и B. Захват D перемещается вдоль прямой ON. Со стороны привода A к звену 1 прикладывается либо управляющий момент MA (варианты 2, 4, 7, 8, 12, 22, 24–26, 29), либо управляющее усилие PA (варианты 1, 3, 5, 6, 9–11, 13–21, 23, 27, 28, 30). Привод B воздействует на звено 2 либо моментом MB (варианты 1–3, 5, 6, 8–11, 13–21, 23, 27), либо управляющим усилием PB (варианты 4, 7, 12, 22, 24–26, 28–30).

Перемещение звена 1 (варианты 3, 4, 7, 12, 22, 24–26, 28–30) или звена 2 (варианты 1, 2, 5, 6, 8–11, 13–21, 23, 27) манипулятора ограничено препятствиями K и L, поэтому изменение угла поворота φ=φ(t) этого звена возможно лишь в интервале [φ(0),φ(τ)], где τ – время движения звена.

Технические условия работы манипулятора требуют, чтобы указанное звено сошло со связи K при t=0 и «мягко» коснулось препятствия L при t=τ, т.е. так, чтобы были удовлетворены условия
[dφ(t)/dt]|t=0,t=τ = 0; [d 2 φ(t)/dt 2 ]|t=0,t=τ = 0.
Программные движения звена 1, удовлетворяющие требованиям «мягкого» касания, приняты в таком виде:

1) φ(t)=φ(0)+[φ(τ)-φ(0)](10-15t/τ+6t 2 /τ 2 )t 3 /τ 3 (варианты 2, 4, 6, 7, 11, 12, 16, 19, 22, 24–26, 28–30);

2) φ(t)=φ(0)+[φ(τ)-φ(0)][t/τ-(1/(2π))sin(2πt/τ)] (варианты 1, 3, 5, 8–10, 13–15, 17, 18, 20, 21, 23, 27).

Значения φ(0) и φ(τ) заданы в табл. 56, а график φ=φ(t) показан на рис. 208. Силами сопротивления движению пренебречь. Механизм расположен в горизонтальной плоскости. Движением захвата относительно звена 1 пренебречь.

В задании приняты следующие обозначения:
m1 – масса первого звена, захвата и переносимого в захвате объекта;
m2 – масса второго звена;
J1 – момент инерции звена 1, захвата и переносимого в захвате объекта относительно главной центральной оси инерции;
J2 – момент инерции звена 2.

Центр тяжести звена 1 находится в точке C (варианты 1–4, 6–8, 11–13, 16, 18–20, 22–30) или в точке A (варианты 5, 9, 10, 14, 15, 17, 21).

1. Вычислить значения управляющих сил и моментов в начале торможения звена 1. Считать, что торможение звена 1 начинается в тот момент, когда угловое ускорение звена обращается в ноль.

2. Построить графики зависимости управляющих моментов и сил от времени.

Варианты с решением: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 30 (решено 87%)

Задание Д.21. Применение уравнений Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы

Механическая система тел 1–6 (рис. 212–214) движется под воздействием постоянных сил P и пар сил с моментами M или только сил тяжести.

Найти уравнения движения системы в обобщенных координатах q1 и q2 при заданных начальных условиях. Необходимые данные приведены в табл. 57; там же указаны рекомендуемые обобщенные координаты (x и φ – обобщенные координаты для абсолютного движения, а ξ – для относительного движения).

При решении задачи массами нитей пренебречь. Считать, что качение колес происходит без проскальзывания. Трение качения и силы сопротивления в подшипниках не учитывать. Колеса, для которых в таблице радиусы инерции не указаны, считать сплошными однородными дисками. Водила (кривошипы) рассматривать как тонкие однородные стержни. Принять, что в вариантах 6, 9, 11, 20, 22 и 30 механизм расположен в горизонтальной плоскости.

Варианты с решением: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 (решено 100%)

Задание Д.22. Определение положений равновесия (покоя) консервативной механической системы с одной степенью свободы и исследование их устойчивости

Для консервативной механической системы с одной степенью свободы требуется:

1. Определить положения равновесия, пренебрегая массами упругих элементов.

2. Провести исследование устойчивости найденных положений равновесия.

Варианты механических систем показаны на рис. 219–221, а необходимые соотношения приведены в табл. 58.

В качестве обобщенной координаты выбрать угол φ. На рис. 219–221 показаны механические системы при некотором положительном угле φ. Во всех вариантах качение колес происходит без проскальзывания и трение в сочленениях отсутствует. При решении задачи считать все стержни и диски однородными.

Теоретическая механика. Уравнения Лагранжа

В этой статье мы попробуем разобраться с такой темой, как «Уравнения Лагранжа». Вообще, уравнения Лагранжа довольно полезная штука, например, на их основе решаются задачи на малые колебания. В МГТУ им. Баумана в третьем семестре предлагается самостоятельное домашнее задание, в котором нужно записать уравнения Лагранжа для системы с двумя степенями свободы.

Итак, типовое задание выглядит так.

Прежде чем броситься решать эту задачу, посмотрим на задание и проанализируем его. Есть призма 3, которая движется поступательно по горизонтальной плоскости без трения. В призме сделан паз 2, по которому движется шарик 1. Если вы помните темы прошлого семестра, то легко увидите, что шарик совершает сложное движение — переносное поступательное вместе с призмой 3 и относительное поступательное по пазу 2. Далее есть стержень 4, который соединяет призму и каток 5. Очевидно, что скорость центра катка С равна скорость призмы. Каток движется без скольжения, это важный момент. Движение системы описывается двумя обобщенными координатами, которые любезно выбрал для нас составитель задания.

Итак, приступим к решению.

Поскольку обобщенных координат две (две степени свободы), система уравнений Лагранжа будет выглядеть так:

Расчет начинаем с записи уравнений связи — выражаем скорости всех ключевых точек и тел, имеющих массу, через обобщенные координаты. Из сказанного ранее понятно, что нам понадобится линейная скорость призмы 3, линейная скорость катка 5, угловая скорость катка 5 и скорость шарика 1. С поступательным движением все просто

С угловой скоростью катка тоже все понятно. Так как проскальзывание отсутствует

Самое трудное — выразить скорость шарика 1. Как мы уже говорили, он совершает сложное движение, значит, его скорость складывается из относительной и переносной. Переносная — это скорость поступательного движения призмы 3. Относительное — скольжение вдоль паза 2, которое описано координатой S. Значит

Векторно складываем эти две скорости

Второе выражение здесь — это теорема косинусов. Если нанести все векторы на рисунок, станет понятно, почему так.

Определившись со скоростями, записываем выражение для кинетической энергии системы Т. Полная кинетическая энергия складывается из кинетических энергий всех тел, обладающих массой. То есть в нашем случае, тел 1, 3, 5.

Шарик 1 обладает энергией

Призма 3 движется поступательно

Каток 5 совершает плоское движение, так что его кинетическая энергия складывается из энергии поступательного и вращательного движений

Полная кинетическая энергия системы

Для записи уравнений Лагранжа это выражение нужно несколько раз продифференцировать.

Сначала по координате x. Частные производные

Производную по x с точкой дифференцируем по времени

Теперь то же самое по координате S. Частные производные

Производная по времени

Левая часть уравнений Лагранжа готова. Займемся правой частью. Для нее нужно посчитать обобщенные силы по каждой координате. Есть несколько способов это сделать, мы предпочитаем делать это через элементарную работу на малом приращении координаты. В общем случае формула выглядит так

На практике это применяется следующим образом. Сначала нанесем на рисунок все действующие силы. В нашем случае это сила упругости пружины и силы тяжести.

Сначала считаем обобщенную силу по координате x. Для этого мысленно «замораживаем» координату S, и позволяем системе свободно двигаться по координате x. То есть шарик «приклеивается» к пазу 2, и внутри него никуда не движется. Все перемещение происходит по координате x. Очевидно, что сила упругости работу не совершает, так как ее длина не меняется. Очевидно, что силы тяжести работу не совершают, так как движение происходит горизонтально. Официальным языком это записывается так

Теперь обобщенная сила по координате S. Мысленно «замораживаем» координату x. Получается, что призма 3 вместе с пазом 2 и катком 5 стоит на месте, а внутри неподвижного паза движется шарик. Сила упругости совершает работу, также как и сила тяжести шарика 1. Пружина была растянута на величину статической деформации δ и дополнительно растянута на S в произвольный момент времени, то есть сила упругости равна с·(δ+S). Работа силы упругости отрицательна, так как пружина растягивается. Работа силы тяжести шарика 1 положительна, так как шарик движется вниз. Силы тяжести призмы 3 и катка 5 работу не совершают, так как эти тела покоятся. Получаем

Собственно, все. Собираем все посчитанные величины в уравнения Лагранжа и получаем систему дифференциальных уравнений, описывающих движение системы.

Для проверки можно посмотреть размерности, в обеих частях выражения размерности должны совпадать (обычно это ньютоны).

Конечно, разные задачи немного отличаются в ходе решения, но алгоритм всех задач примерно такой.

1) Определить число степеней свободы и выбрать обобщенные координаты

2) Записать уравнения связей

3) Записать выражение для кинетической энергии

4) Взять необходимые производные

5) Записать обобщенные силы по каждой координате

6) Записать уравнения Лагранжа

Если что-то не получается, не отчаивайтесь, мы всегда рады помочь.

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ

Ростовский государственный университет

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Методические указания к выполнению

расчетно-графической работы Д7 по теоретической механике

Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы. Методические указания к выполнению расчетно-графической работы Д-7 по теоретической механике /, , ; Ростовский госуниверситет путей сообщения. Ростов-на-Дону, 2000, 19 с.

Кратко излагается теоретический материал, приводятся примеры решения типовых задач. Даны варианты к расчетно-графической работе Д7.

Одобрены к изданию кафедрой теоретической механики РГУПС и предназначены студентам механических специальностей.

Ил. 2 Библиогр.: 4 назв.

Рецензенты: канд. физ.-мат. наук, доц. (РГУ); канд. техн. наук, доц. (РГУПС)

Методические указания к выполнению

Расчетно-графических работ Д7 по теоретической механике

Подписано в печать______2000г. Формат 60х84/16.

Бумага офсетная. Печать офсетная. Усл. печ. л 0,93.

Уч.-изд. л. 0,88. Тираж ____. Изд. № 000. Заказ № ____.

Ростовский государственный университет путей сообщения.

Ризография АСУ РГУПС. Лицензия ПДЛ №65-10 от 08.08.99г.

Адрес университета: 344038, г. Ростов н/Д, пл. им. Ростовского стрелкового полка народного ополчения,2

Ó Ростовский государственный университет путей сообщения, 2000

1. Общие указания

2. Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

3. Условие задачи Д7

4. Указания к решению задачи

5. Примеры решения типовых задач

6. Данные к вариантам задания Д7

7. Схемы к вариантам задания Д7

В первой части методических указаний содержатся краткие сведения из теории и примеры решения задания Д7, входящего в курсовую работу по теоретической механике.

В приложении I студент выбирает свой вариант по номеру рисунка согласно цифре, под которой его фамилия стоит в учебном журнале. Исходные данные берутся из таблицы (приложение 2). Номер строки в ней для каждой группы назначает преподаватель.

Оформление отчета

Расчетно-графическая работа оформляется в такой последовательности:

— условие задачи с рисунком;

На отдельном листе нужно полностью переписать условие задачи и выполнить относящийся к ней рисунок. Он должен быть выполнен четко, аккуратно, карандашом. В работе надо оставлять поля для замечаний консультанта.

Решение каждой задачи следует сопровождать пояснениями, то есть надо указывать, какие теоремы, формулы или уравнения применяются для решения. Чертежи, выполняемые в процессе решения задачи, должны соответствовать конфигурации системы в рассматриваемый момент времени, на них должны изображаться все векторы (силы, ускорения). Формулы сначала надо написать в общем виде (буквенном), а затем подставлять числовые значения, рядом указывать единицы измерения. В конце расчета дается сводная таблица полученных результатов.

Порядок приема и сдачи индивидуального задания

I. Срок сдачи индивидуального задания указывается консультантом (руководителем практических занятий).

II. При защите расчетно-графической работы студент должен пояснить ход ее выполнения, ответить на все поставленные вопросы и в отдельных случаях решить предложенные ему примеры.

III. Работа, небрежно выполненная и содержащая орфографические ошибки, не принимается.

Задание не засчитывается, если указанные требования не выполнены!

Задание Д7. Применение уравнений Лагранжа второго рода к исследованию движения механической системы с одной степенью свободы

Краткие сведения из теории к заданию

Уравнения Лагранжа второго рода представляют собой систему уравнений динамики в обобщенных координатах. Использование их является универсальным методом получения системы дифференциальных уравнений, описывающих движение любой механической системы

Обобщенными координатами системы называется совокупность независимых параметров, которые при наименьшем числе однозначно определяют положение механической системы.

В последующем обобщенные координаты обозначаются q1, q1,…, qN или qj(j=1,2,…,N). Производные по времени от обобщенных координат называются обобщенными скоростями . Число N независимых обобщенных координат голономной системы равно числу ее степеней свободы.

Уравнения Лагранжа второго рода имеют вид

где Т — кинетическая энергия системы;

Qj — обобщенная сила, соответствующая j-той обобщенной координате.

Кинетическая энергия системы равна сумме кинетических энергий всех объектов, образующих систему.

Кинетическая энергия твердого тела определяется по формулам:

— при поступательном движении

,

– скорость центра масс тела;

,

Jz – момент инерции тела относительно оси вращения;

w — угловая скорость вращения;

— при плоскопараллельном движении

,

Jzc – момент инерции тела относительно оси, проходящей через центр масс, перпендикулярно плоскости движения.

Величина называется j-той обобщенной силой.

Если вычислить сумму элементарных работ активных сил, действующих на точки системы на возможном перемещении системы, то соответствующая формула может быть представлена в виде

поэтому часто обобщенные системы определяют как коэффициенты, стоящие в выражении суммы элементарных работ активных сил при соответствующих обобщенных возможных перемещениях.

Для определения обобщенной силы, соответствующей j-той обобщенной координате, необходимо этой координате сообщить приращение , оставляя все остальные обобщенные координаты без изменений; вычислить сумму элементарных работ всех сил, действующих на систему, на этом перемещении и полученную работу разделить на приращение обобщенной координаты

При вычислении работы сил используются следующие формулы:

— работа сил тяжести

,

h – изменение высоты между начальным и конечным положениями

— работа силы трения

— работа постоянной силы на прямолинейном перемещении

,

a — угол между направлением силы и направлением перемещения

— работа сил, приложенных к вращающемуся телу

,

Mz(F) – момент силы относительно оси вращения;

j — угол поворота тела

Методика составления уравнений Лагранжа второго рода

Составление уравнений Лагранжа второго рода производится в следующем порядке:

1) определяется число степеней свободы заданной механической системы;

2) выбираются независимые обобщенные координаты, число которых равно числу степеней свободы;

3) вычисляется кинетическая энергия Т рассматриваемой системы, которая выражается через обобщенные скорости;

4) находятся частные производные кинетической энергии по обобщенным скоростям, т. е.

затем вычисляются их производные по времени

5) определяются частные производные кинетической энергии по обобщенным координатам

6) находятся обобщенные силы Q1, Q2,…QN соответствующие выбранным обобщенным координатам;

7) полученные в п. п. 4-6 результаты подставляются в уравнения Лагранжа.

Условие задачи Д-7

Механическая система состоит из ступенчатых шкивов 1 и 2 весом Р1 и Р2 с радиусами R1=R, r1=0,4R и R2=R, r2=0,8R (массу каждого шкива считать равномерно распределенной по его внешнему ободу); грузов или сплошных однородных цилиндрических катков 3, 4, 5, веса которых Р3, Р4, Р5 соответственно. Тела системы соединены нитями, намотанными на шкивы и невесомые блоки. Участки нити параллельны соответствующим плоскостям. Грузы скользят по плоскостям без трения, а катки катятся без скольжения. Система движения в вертикальной плоскости под действием сил тяжести, кроме того, на одно из тел действует постоянная сила F, а на шкивы 1 или 2 при их вращении действуют постоянные моменты сил сопротивления М1 и М2.

Определить величину, указанную в таблице в столбце «Найти», где e1 и e2 — угловые ускорения шкивов 1 и 2, аС3, аС4, аС5 — ускорения грузов или центров масс соответствующих катков. (Если необходимо определить e1 или e2 принять R=0,25м).

Указания к решению задачи

Для исследования движения системы нужно составить уравнение Лагранжа 2-го рода. Во всех вариантах система имеет одну степень свободы, и еe положение определяется одной обобщенной координатой q. Уравнение Лагранжа — это дифференциальное уравнение 2-го порядка относительно обобщенной координаты.

(1)

Если нужно найти ускорение a3C или a4C грузов 3,4 или ускорение a5C центра масс С катка 5, то за обобщенную координату целесообразно принять перемещение х центра масс этих тел, тогда — обобщенная скорость и уравнение примет вид:

(2)

Если же нужно определить угловое ускорение e1 или e2 одного из шкивов, то за обобщенную координату нужно принять угол поворота шкива, т. е. и уравнение будет иметь вид:

(3)

Для составления уравнения (2) или (3) нужно вычислить кинетическую энергию Т системы, выразив её через обобщенную скорость ( или ) и обобщенную координату q (x или j). Затем нужно найти обобщенную силу Qx или Qj, для определения которой нужно сообщить системе возможное (малое) перемещение ( или ) и вычислить сумму элементарных работ всех сил на этом перемещении. Элементарные перемещения всех тел нужно выразить через dx или dj , тогда получим: или , т. е. коэффициенты при dx или dj в выражении dА и будут обобщенными силами.

Примечание: в варианте №21 шкивы 1, 2 и в варианте №25 шкив 2 считать однородными цилиндрами.

Примеры решения типовых задач

Дано: Р1=12Р, Р2=8Р, Р3=2Р, Р4=12Р, Р5=6Р, F=3P, M=3PR

(Р-в Н, R-в м.), R1=0,3R, r1=0,2R, R2=0,2R, r2=0,1R.

1. Система имеет одну степень свободы. За обобщенную координату возьмем перемещение груза 4 (q=x).

Предположим, груз 4 опускается. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы:

(2)

Шкивы 1 и 2 вращаются вокруг неподвижной оси, грузы 3 и 4 движутся поступательно, а каток 5 движется плоскопараллельно.

(3)

(4)

3. Скорости n3 и nс, угловые скорости w1, w2 и w5 выразим через обобщенную скорость

(5)

Подставляя значения (4) и (5) в равенства (3), а затем в (2), получим:

Найдем частные производные от Т по х и :

(7)

4. Определим обобщенную силу . На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , и момент пары силы М(сила работы не совершает, т. к. груз 3 движется по горизонтали).

Сообщим системе возможное перемещение dх груза 4 в направлении его движения и покажем перемещения остальных тел: груза 3-dх3, центра масс С катка 5-dхс, а для шкивов углы поворота dj1 и dj2. Вычислим сумму элементарных работ сил тяжести , , силы и момента пары сил М на этих перемещениях.

Коэффициент при dх в выражении dА будет обобщенной силой Qх.

5. Найденные величины (7) и (8) подставим в уравнение (1).

Отсюда находим:

Ответ:

Дано: Р1=2Р, Р2=0, Р3=3Р, Р4=0, Р5=4Р, F=12Р, М1=0,3РR, М2=0

R1=R, R2=R, r1=0,4R, r2=0,8R, R=0,25м, a=60°, b=30°

Найти: e2 – угловое ускорение второго шкива

1. Система имеет одну степень свободы. За обобщенную координату возьмем угол поворота шкива 2 (q=j). Предположим, что шкив вращается против часовой стрелки. Составим уравнение Лагранжа 2го рода:

(1)

2. Определим кинетическую энергию Т системы

(2)

Грузы 3 и 4 движутся поступательно, следовательно

Шкивы 1 и 2 вращаются вокруг неподвижных осей, следовательно

Каток 5 движется плоскопараллельно

3. Скорости V3, V4, VС, угловые скорости w1, w5 выразим через обобщенную скорость

Из рисунка видно, что

(точка Р касания катка и наклонной плоскости является мгновенным центром скоростей катка)

Подставим найденные выражения в формулу кинетической энергии системы

4. Определим обобщенную силу Qj. На чертеже покажем силы, совершающие при движении системы работу, т. е. силы тяжести , , и моменты пары сил М1 и М2 (силы и приложенные к осям вращения шкивов работы не совершают).

Сообщим системе возможное перемещение соответствующее повороту шкива 2 на угол против часовой стрелки и покажем перемещения остальных тел: груза 3 — , груза 4 — , центра масс С кат-ка 5 — , а для шкива 1 – угол поворота .

Вычислим сумму элементарных работ указанных активных сил (силы тяжести сила и пара сил с моментом М) на выбранном возможном перемещении системы

,

Вычислим обобщенную силу Q по формуле

Подставляя все полученные выражения в уравнение Лагранжа получим его в виде


источники:

http://botva-project.ru/botva/obrazovanie/teoreticheskaya-mehanika-uravneniya-lagranzha/

http://pandia.ru/text/80/222/31432.php