Уравнение лапласа для электрического поля

Электрическое поле в проводящей среде подчиняется уравнению Лапласа

Электрическое поле в проводящей среде подчиняется уравнению Лапласа

Электрическое поле проводящей среды следует уравнению Лапласа. Подобно электростатическому полю, напряженность электрического поля проводящих сред составляет E = —град

  • Для полей, не зависящих от времени, div 6 = divy £ = 0- (14.7) Если среда не меняется от точки к точке, то есть если среда однородна и изотропна,

то y как постоянное значение можно взять из знака расходимости Людмила Фирмаль

Вместо divуЕ-0 вы можете написать div divЕ = 0 или divÅ = 0. (14.8) Другими словами, div (-gradtp) = О или V?

Следовательно, оно следует полевому уравнению Лапласа для однородной проводящей среды.

  • Уравнение Лапласа описывает потенциальное поле.

Следовательно, поле постоянного тока в проводящей среде

является потенциальным полем. Людмила Фирмаль

Среди них в районах, не занятых источниками (г-н Эдл-0.

Если вам потребуется заказать решение по электротехнике (ТОЭ) вы всегда можете написать мне в whatsapp.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Уравнение Пуассона и Лапласа

В случае потенциального поля напряженность поля Е может быть выражена через градиент потенциала. При этом приходим к выражению

содержащему двойную дифференциальную операцию: дивергенцию от градиента. При использовании декартовой системы координат легко записать эту операцию через соответствующие производные. Действительно, представляя в формулу (1) составляющие grad φ как:

Операция div grad носит название лапласиана и обозначается знаком Δ. Используя оператор набла, рассматриваемую операцию можно представить как наблу квадрат, таким образом:

В случае декартовых координат и в применении к скалярной функции можно всегда считать операции ∇ 2 и Δ тождественными.

Уравнение (1) является основным уравнением потенциального электрического поля и носит название уравнения Пуассона.

В области поля, где заряды отсутствуют (где ρ = 0), уравнение (1) упрощается, так как в его правой части оказывается нуль. В последнем случае уравнение называют уравнением Лапласа.

и было названо дифференциальным уравнением электрического потенциального поля.

Рассмотрим несколько примеров.

Пример 1

В некоторой области поля потенциал изменяется по закону:

Содержится ли в этой области объемный заряд и чему он равен?

Решение

Путем прямого дифференцирования найдем:

Уравнение Лапласа удовлетворяется (объемный заряд равен нулю).

Пример 2

То же, что и в предыдущем примере, но описанное следующим уравнением:

Решение

Очевидно, что правая часть данного равенства в общем случае не равна нулю.

Примечание к примерам 1 и 2. Из рассмотрения встретившихся видов произведений можно сделать более общий вывод:

всегда удовлетворяет уравнению Лапласа (первый множитель в формуле (5) cos или sin, а второй ch или sh).

Уравнения Пуассона и Лапласа

Уравнения Пуассона и Лапласа являются основными дифференциальными уравнениями электростатики. Они вытекают из теоремы Гаусса в дифференциальной форме. Действительно, подставляя в уравнение

вместо величин Ех; Еу; Еz их выражения через потенциал:

Это дифференциальное уравнение носит название уравнения Пуассона.

является решением уравнения Пуассона для случая, когда заряды распределены в конечной области пространства.

Если в рассматриваемой области пространства отсутствуют объемные электрические заряды, то уравнение Пуассона получает вид

и называется в этом частном случае уравнением Лапласа.

Отметим, что в цилиндрической и сферической системах координат уравнение Пуассона и Лапласа имеют другую форму записи. Поэтому данные уравнения часто записывают в виде, не зависящем от системы координат:

Оператор ? 2 часто обозначают и называют оператором Лапласа или лапласианом.

При интегрировании уравнения Лапласа (или Пуассона) в решение входят постоянные интегрирования. Их определяют из граничных условий.


источники:

http://elenergi.ru/uravneniya-puassona-i-laplasa-dlya-potencialnogo-polya.html

http://electrono.ru/dopolnitelnye-glavy/1-9-uravneniya-puassona-i-laplasa