Уравнение линии с двумя неизвестными

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Оба уравнения также равносильны.

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

Алгебраические уравнения линий на плоскости

Напомним, что многочленом степени одной переменной называется выражение вида

где — действительные числа (коэффициенты многочлена), — старший коэффициент, — свободный член. Степень многочлена обозначается .

Многочленом двух переменных называется выражение вида

где — действительные числа (коэффициенты многочлена), и — целые неотрицательные числа. Число

называется степенью многочлена двух переменных.

Алгебраической линией на плоскости называется множество точек, которое в какой-либо аффинной системе координат может быть задано уравнением вида

где — многочлен двух переменных и .

Уравнение вида (3.4) называется алгебраическим уравнением с двумя неизвестными. Степенью уравнения (3.4) называется степень многочлена . Одна и та же линия может быть задана уравнением вида (3.4) с многочленами разных степеней. Порядком алгебраической линии называется наименьшая из степеней этих многочленов.

Всякую неалгебраическую линию называют трансцендентной.

В примере 3.1,а,б,в,г,е — линии алгебраические: а — первого порядка, б,в,г,е — второго порядка. Примером трансцендентной линии служит синусоида, т.е. график функции . Эту линию нельзя задать уравнением вида (3.4).

Теорема (3.1) об инвариантности порядка алгебраической линии

Если в некоторой аффинной системе координат на плоскости линия задана уравнением (3.4), то и в любой другой аффинной системе координат эта линия задается уравнением того же вида (3.4) и той оке степени.

Действительно, пусть в аффинной системе координат уравнение имеет вид (3.4):

Получим уравнение этой линии в другой (новой) аффинной системе координат . Старые координаты точки связаны с новыми ее координатами выражениями (2.8):

где — координаты вектора переноса начала координат , а — элементы матрицы перехода базиса к новому . Подставим эти выражения в одночлен :

Раскрывая скобки, получаем многочлен двух переменных , степень которого не больше, чем . Аналогичные многочлены получим из других одночленов, входящих в левую часть (3.4). Сложив эти многочлены, получим многочлен , степень которого не превосходит степени исходного многочлена . Таким образом, при замене системы координат порядок алгебраической линии не увеличивается. Но он не может и уменьшиться, так как если порядок уменьшится при переходе к новой системе координат, то он должен увеличиться при обратном переходе к старой системе координат. Следовательно, порядок алгебраической линии остается неизменным в любой аффинной системе координат (говорят, что порядок алгебраической линии является инвариантом). Теорема доказана.

В аналитической геометрии на плоскости изучаются:

– алгебраические линии первого порядка, описываемые алгебраическим уравнением первой степени с двумя неизвестными:

– алгебраические линии второго порядка, описываемые алгебраическим уравнением второй степени с двумя неизвестными:

1. Теорема 3.1 фактически выражает свойство многочленов: при линейной невырожденной замене переменных

где , степень многочлена не изменяется.

Действительно, преобразование уравнения при переходе от одной системы координат к другой соответствует линейной невырожденной замене переменных многочлена в левой части уравнения.

2. Алгебраическое уравнение (3.4) может не иметь действительных решений. Например, на плоскости нет точек, координаты которых удовлетворяют уравнению . Однако в области комплексных чисел, согласно основной теоремы алгебры, любое алгебраическое уравнение имеет решения. Поэтому каждое алгебраическое уравнение (3.4) , где и , задает некоторую алгебраическую линию на двумерной комплексной плоскости (см. пункт 2 замечаний 2.9). Если все точки этой линии вещественные (действительные), т.е. , а , то линию называют вещественной (действительной). В противном случае линию называют мнимой.

3. Алгебраическими неравенствами с двумя неизвестными называются неравенства вида

где — многочлен двух переменных и . Степенью алгебраического неравенства называется степень многочлена .

4. Многочлены первой степени и алгебраические уравнения (неравенства) первой степени называются линейными.

5. Многочлен второй степени

называется также квадратичной функцией двух переменных; многочлен называется квадратичной формой (квадратичной частью функции), многочлен — линейной формой (линейной частью функции), коэффициент — свободным членом. По сравнению со стандартной записью многочлена некоторые коэффициенты квадратичной функции удвоены для удобства выполнения алгебраических преобразований.

6. Квадратичную функцию можно записать:

где — матрица квадратичной функции; расширенный (дополненный единицей)
столбец переменных;

б) выделяя квадратичную и линейную части:

7. Многочлены второй степени и алгебраические уравнения (неравенства) второй степени называются квадратичными (квадратными).

8. Линии, задаваемые системой алгебраических уравнений и неравенств, называются полуалгебраическими. Например, уравнение задает на координатной плоскости полуалгебраическую линию:

9. Теорема 3.1, разумеется, справедлива для прямоугольных систем координат на плоскости. Напомним, что преобразования прямоугольных систем координат являются ортогональными (см. пункт замечаний 2.3). Поэтому соответствующие этим преобразованиям линейные замены переменных (см. пункт 1) с ортогональной матрицей называются ортогональными (неоднородными при или однородными при ). Далее, как правило, будут рассматриваться уравнения, записанные в прямоугольной системе координат .

Алгебра. 7 класс

Конспект урока

Уравнения первой степени с двумя неизвестными

Перечень рассматриваемых вопросов:

• Решение линейных уравнений.

• Линейное уравнение с двумя неизвестными.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

Свободный член – член уравнения, не содержащий неизвестного.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.

Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Мы с вами уже познакомились с линейными уравнениями первой степени, содержащими одно неизвестное.

Однако уравнение может содержать не одно, а несколько неизвестных, обозначенных буквами. Сформулируем определение уравнения в общем виде.

Уравнением называется равенство, в котором одно или несколько чисел, обозначенных буквами, являются неизвестными.

Пусть, например, сказано, что сумма квадратов двух неизвестных чисел.

x 2 + z 2 = 7x 2 + z 2 = 7

Для уравнений с двумя неизвестными остаются справедливыми все те свойства, которые были установлены для уравнений с одним неизвестным.

Попробуем дать определение таких уравнений.

Уравнением первой степени с двумя неизвестными называется уравнение вида ax + bx = c, где x, y – неизвестные, a, b (коэффициенты при неизвестных), не равные оба нулю, c – любое число.

Решим уравнение: 2x – y = 3

Возьмём пару чисел: x = 1, y = –1.

Подставив эти значения, получим верное равенство:

Следовательно, эта пара чисел удовлетворяет уравнению, или она (эта пара) – решение уравнения.

Возьмём пару чисел: x = 2, y = 4

Следовательно, 0 ≠ 3. Это ложное равенство.

Говорят, что пара чисел не удовлетворяет уравнению, или, что она – не решение уравнения.

Определение. Каждая пара значений x и y, подстановка которых в уравнение с двумя неизвестными x и y, обращает его в верное равенство.

Уравнение первой степени, содержащее два неизвестных, имеет бесконечное множество решений.

В случае линейной зависимости, выражающейся уравнением первой степени с двумя неизвестными, графиком является прямая линия.

Докажем, что прямая линия будет графиком и любого уравнения первой степени с двумя неизвестными.

Возьмём уравнение: 2x – y = 4

Уравнение представляет собой линейную зависимость вида:

y = ax + b, графиком является прямая линия.

Трехногие инопланетяне выгуливают на лужайке своих двуногих питомцев. Кто-то подсчитал, сколько ног ходит по лужайке. Их оказалось 15. Сколько было инопланетян и сколько их питомцев?

Необходимо ввести две переменные: x – число инопланетян, y – число питомцев, тогда получим уравнение 3x + 2y = 15.

Давайте же узнаем, сколько инопланетян выгуливало своих питомцев.

далее воспользуемся методом перебора: при x = 1, y = 6. При x = 2,

Ответ: 1 инопланетянин и 6 питомцев; 3 инопланетянина и 3 питомца.

Подобные уравнения встречаются часто, они-то и называются неопределенными. Особенность их состоит в том, что уравнение содержит две или более переменных и требуется найти все целые или натуральные их решения. Такими уравнениями и занимался Диофант. Он изобрел большое число способов решения подобных уравнений, поэтому их часто называют диофантовыми уравнениями.

Разбор заданий тренировочного модуля.

Какое значение переменной удовлетворяет уравнению: 4x – 2y – 14?

Для решения уравнения, выразим одну переменную через другую: 2y = 4x – 14,

разделим обе части уравнения на 2:

подставим вместо переменной x её значения:

при x = 3 получаем:

при x = 4 получаем:

при x = –4 получаем:

Следовательно, из предложенного списка, уравнению удовлетворяет только пара:

Решите уравнение: x – 2y = 5

Выразим переменную x через переменную y:

подставим вместо переменной y её значения:

при y = 1 получаем x = 5 + 2 = 7

при y = 3 получаем x = 5 + 6 = 11

при y = 5 получаем x = 5 + 10 = 15

Следовательно, из предложенного списка, уравнению удовлетворяет только пара:


источники:

http://mathhelpplanet.com/static.php?p=algebraicheskie-uravneniya-linii-na-ploskosti

http://resh.edu.ru/subject/lesson/7273/conspect/