Уравнение линий второго порядка окружность

ОБЩЕЕ УРАВНЕНИЕ ЛИНИЙ ВТОРОГО ПОРЯДКА

Линии второго порядка

1. Основные понятия.

6. Общее уравнение линий второго порядка.

ОСНОВНЫЕ ПОНЯТИЯ

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

.

Коэффициенты уравнения – действительные числа, но, по крайней мере, одно из чисел отлично от нуля. Такие линии называются линиями (кривыми) второго порядка.

ОКРУЖНОСТЬ

Простейшей кривой второго порядка является окружность.

Определение. Окружностью радиуса R с центром в точке называется множество всех точек плоскости, удовлетворяющих условию .

Каноническое уравнение окружности .

Эллипс

Определение. Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами.

Каноническое уравнение эллипса .

у

с – половина расстояния между фокусами; a – большая полуось; b – малая полуось.

и называются фокальными радиусами. ,

Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением:

Определение.Характеристикой эллипса, показывающей меру его вытянутости, является эксцентриситет – величина, определяемая отношением: .

Замечание. Для эллипса .

Определение.Прямые называются директрисами эллипса.

Теорема. Если ­­– расстояние от произвольной точки эллипса до какого-нибудь фокуса, – расстояние от этой же точки до соответствующей этому фокусы директрисы, то отношение есть постоянная величина, равная эксцентриситету эллипса: .

Замечание. Если a = b, то c = 0, а значит, фокусы сливаются, и эллипс превращается в окружность.

Если же , то уравнение определяет эллипс, большая ось которого лежит на оси Оу, а малая ось – на оси Ох. Фокусы такого эллипса находятся в точках F1 (0;с); F2(0;-с), где b 2 = a 2 + c 2 .

Пример. Составьте уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), а большая ось равна 2.

Уравнение эллипса имеет вид: .

Расстояние между фокусами: 2c = , таким образом,

a 2 – b 2 = c 2 = .

По условию большая ось равна 2, то есть 2а = 2, откуда получаем, что

а = 1, b = .

Тогда искомое уравнение эллипса имеет вид: .

Гипербола

Определение. Гиперболойназывается линия, для всех точек которой модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы .

y

Теорема. Фокусное расстояние и полуоси гиперболы связаны соотношением:

Ось 2а называется действительной осью гиперболы.

Ось 2b называется мнимой осью гиперболы.

Прямоугольник со сторонами 2а и2b называется основным прямоугольником гиперболы.

Гипербола имеет две асимптоты, уравнения которых

Замечание.Для гиперболы эксцентриситет .

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/ε от него, называются директрисами гиперболы. Их уравнения: .

Определение. Гипербола называется равносторонней, если ее полуоси равны ( ).

Ее каноническое уравнение .

Определение. Эксцентриситетом гиперболы называется отношение расстояние между фокусами к величине действительной оси гиперболы, обозначается : .

Кривая, определяемая уравнением , также есть гипербола, действительная ось которой расположена на оси , а мнимая ось – на оси .

Гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

Пример. Составьте уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса, заданного уравнением

Найдем фокусное расстояние для эллипса:

Тогда искомое уравнение гиперболы .

Парабола

Определение. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы y 2 = 2px .

у

Линии второго порядка — определение и вычисление с примерами решения

Содержание:

Линии второго порядка

Окружность

Выведем уравнение окружности (рис. 30) с центром С

Отсюда, вспоминая формулу расстояния между двумя точками, имеем

Так как обе части равенства (2) положительны, то, возводя в квадрат, получим равносильное уравнение

Итак, координаты любой точки М (х, у) данной окружности удовлетворяют уравнению (3). Справедливо также обратное утверждение.

Таким образом, уравнение (3) представляет собой уравнение окружности радиуса R с центром в точке С. Это уравнение назвают нормальным уравнением окружности.

В частности, полагая х0 = 0 и у0 = 0, получим уравнение окружности с центром в начале координат

Уравнение окружности (3) после несложных преобразований можно привести к виду

где

Таким образом, окружность является кривой второго порядка.

Сравнивая уравнение (5) с общим уравнением кривой второго порядка

(6)

мы видим, что в (5) В = 0 и, кроме того, А — 1, С = 1, т. е. А = С. Обратно, положим в (6) В = 0 и

Деля уравнение (7) почленно на и полагая

мы приходим к уравнению вида (5).

Уравнение (7) называется общим уравнением окружности. Заметим, однако, что не всякое уравнение (7) является уравнением действительной окружности. Легко показать, что (7) определяет действительную кривую (окружность) лишь при где выражаются равенствами (8).

Таким образом, действительная кривая второго порядка является окружностью тогда и только тогда, когда: 1) коэффициенты при квадратных текущих координат равны между собой и 2) отсутствует член, содержащий произведение текущих координат.

Центральные кривые второго порядка

Рассмотрим уравнение второго порядка

без члена с произведением координат х и у (В = О)1. Дополняя члены, содержащие x и у соответственно, до полных квадратов, будем иметь

В нашем кратком курсе при рассмотрении общих уравнений кривых второго порядка мы ограничимся лишь этим случаем.

Отсюда, полагая

Точка О'(х0, у0) представляет собой центр симметрии кривой (5) (центр кривой). Действительно, если точка Мх(х19 У\) лежит на кривой (5), то симметричная ей относительно О’ точка М2(х2, у2) где — очевидно, также лежит на кривой (5) (рис. 31).

Параллельные осям координат Ох и Оу прямые у = у0 и х = х0 являются осями симметрии кривой (5) (оси кривой). Действительно, если точка лежит на кривой (5), то симметричная ей относительно прямой у = у0 точка также лежит на этой кривой. Аналогичным свойством обладает прямая х = х0.

В дальнейшем, для простоты исследования, будем предполагать, что центр кривой находится в начале координат, т. е. х0 = О, = 0. Тогда уравнение кривой примет вид

Определение: Кривая второго порядка (6) называется эллипсом (точнее, принадлежит эллиптическому шипу)у если коэффициенты А и С имеют одинаковые знаки, т. е.

Для определенности будем полагать, что А > 0 и С > 0 (так как в противном случае знаки членов уравнения (6) можно изменить на обратные).

Возможны три случая: . В первом случае, , имеем действительный эллипс

где числа

называются полуосями эллипса. Обычно полагают 0 О, тогда С 0), а знак минус — левой ветви (х 1 — равномерное растяжение окружности.

Предположим, что при нашей деформации точка окружности М(Х, У) переходит в некоторую точку М(х, у) преобразованной кривой (рис. 35). Так как точки М и М’ лежат на одной и той же вертикали, то имеем

Отсюда при получим

Подставляя эти выражения в уравнение (1), находим , или

где т. е. преобразованная точка М’ расположена на эллипсе с полуосями а и Ь.

Обратно, если точка М’ принадлежит эллипсу (4), то соответствующая ей в силу (2) точка М(Х, У) лежит на окружности (1).

Таким образом, результат равномерной деформации окружности вдоль одного из ее диаметров представляет собой эллипс.

Асимптоты гиперболы

Рассмотрим гиперболу (см. рис. 33)

Решая уравнение (1) относительно у, получаем

Если \х\ неограниченно возрастает, то и, следовательно, в некотором смысле, имеет место приближенное равенство

Покажем, что ветви гиперболы (1) сколь угодно близко подходят к прямым (см. рис. 33)

носящим название асимптот гиперболы. Действительно, например, при х > О возьмем в формулах (2) и (4) знаки плюс. Рассмотрим соответствующие точки М (х, у) гиперболы (2) и N (х, У) прямой (4), имеющие одну и ту же абсциссу х. Тогда

при

Аналогично рассматриваются еще три случая: знаки минус в (2) и в (4) при ; в (2) знак плюс, в (4) минус при и, наконец, в (2) минус, в (4) плюс при . Заметим, что сопряженная гипербола

как нетрудно проверить, имеет общие асимптоты с гиперболой (1).

Для равнобочной гиперболы (а = Ь)

ее асимптоты у = ±х взаимно перпендикулярны.

График обратной пропорциональности

Рассмотрим кривую (рис. 36)

Выбирая за новые оси координат Ох’ и Оу’ биссектрисы координатных углов и учитывая, что угол поворота будем иметь

Отсюда на основании (1) получаем

Таким образом, графиком обратной пропорциональности (1) является равнобочная гипербола.

Нецентральные кривые второго порядка

Кривая второго порядка называется нецентральной, если она или не имеет центра симметрии, или же имеет бесконечно много центров симметрии (т. е. не имеет единственного центра). Рассмотрим кривую второго порядка

где . Для определенности будем считать, что

Кроме того, предположим, что , в противном случае мы бы имели пару параллельных прямых.

Дополняя в уравнении (1) члены с у до полного квадрата, будем иметь получим

Кривая (4) называется параболой (рис. 37); точка О’ (х0, у0) носит название вершины параболы у а число р называется параметром параболы. Легко убедиться, что прямая у = Уо является осью симметрии параболы (ось параболы); центра симметрии парабола (4) не имеет.

Если вершина параболы находится в начале координат, а ее осью является ось Ох, то мы получаем так называемое каноническое уравнение параболы причем параметр р здесь обычно считается положительным (этого можно добиться, выбирая надлежащее направление оси Ох; рис. 38, а).

Заметим, что если поменять ролями оси Ох и Оу, то каноническое уравнение параболы примет вид

Это уравнение параболы с вертикальной осью (рис. 38, б).

Фокальное свойство параболы

Рассмотрим параболу (рис. 38, а)

Точка называется ее фокусом, а прямая директрисой.

Для точки М(х, у) ее фокальный радиус г = MF равен

Далее, расстояние от этой точки до директрисы равно

Таким образом, парабола представляет собой множество всех точек плоскости, равноотстоящих от данной точки (фокуса) и от данной прямой (директрисы). Это характеристическое свойство параболы.

Пример:

Определить координаты фокуса и уравнение директрисы параболы

Решение:

Сравнивая это уравнение с уравнением (6), получим 2р = 1; отсюда р = 1/2. Следовательно, фокус параболы имеет координаты (0, 1/4), а уравнение директрисы есть у = -1/4.

График квадратного трехчлена

Рассмотрим квадратный трехчлен

Дополняя выражение, стоящее в скобках, до полного квадрата, получим

то из формулы (3) получим

Делая параллельный перенос системы координат

окончательно будем иметь

Уравнение (6) , формула (6) представляет собой каноническое уравнение параболы с вертикальной осью, вершина которой находится в точке и параметр . Таким образом, график квадратного трехчлена является параболой с вершиной в точке , ось которой параллельна оси Оу (парабола со смещенной вертикальной осью; рис. 39).

Заметим, что абсциссы точек пересечения параболы (1) с осью Ох являются корнями квадратного уравнения

На этом свойстве основан графический способ решения квадратного уравнения (7).

Пример:

Привести уравнение к каноническому виду и построить соответствующую параболу.

Решение:

Перенося свободный член в левую часть уравнения и дополняя правую часть до полного квадрата, будем иметь у — 3 + 4 = = х2- 4х + 4, или

Полагая х-2=х’,у + 1 = у’, получим

Таким образом, заданное уравнение есть уравнение параболы с вершиной в точке и осью симметрии параллельной оси Оу (рис. 40).

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Полярные координаты
  • Непрерывность функции
  • Уравнения поверхности и линии в пространстве
  • Общее уравнение плоскости
  • Интегрирование тригонометрических функций
  • Интегрирование тригонометрических выражений
  • Интегрирование иррациональных функций
  • Прямоугольная система координат на плоскости и ее применение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Лекция по математике: линии второго порядка: окружность, эллипс, гипербола, парабола.

Лекция по математике.

Тема линии второго порядка.

Просмотр содержимого документа
«Лекция по математике: линии второго порядка: окружность, эллипс, гипербола, парабола.»

Раздел 1. Элементы аналитической геометрии.

Тема 1.3 Кривые второго порядка.

Тема занятия: линии второго порядка: окружность; эллипс; гипербола; парабола.

1. Понятие линии второго порядка.

2.Окружность и её уравнение.

3. Эллипс и его уравнение.

4. Гипербола и её уравнение.

5. Парабола и её уравнение.

1. Понятие линии второго порядка.

Всякая кривая второго порядка относительно декартовых координат задается уравнением:

, (18)

Это уравнение задает окружность, эллипс, параболу или гиперболу в зависимости от соотношений между его коэффициентами. Например, если в уравнении: a11= a22 и a12=0, то оно является уравнением окружности.

Если уравнение (18) разлагается на два линейных множителя, то в этом случае оно определяет пару прямых, которые могут пересекаться, быть параллельными или совпадать.

2.Окружность и её уравнение.

Определение. Окружностью называется геометрическое место точек плоскости, равноудаленных от некоторой фиксированной точки плоскости, называемой ее центром.

Каноническое уравнение окружности имеет вид:

, (19)

Где(a,b)– координаты центра, а R– радиус окружности.

Пример 1. Найти центр и радиус окружности

.

Решение. Выделяя полные квадраты по x и по y, приведем уравнение к виду

,

откуда, сравнивая с (19), находим C(3; -1)и R = 6.

Пример 2. Составить уравнение окружности, проходящей через три точки , , .

Решение. Центр окружности находится в точке пересечения перпендикуляров, проведенных через середины хорд. Точка М1(-1;2) – середина хорды АВ, а

М1( 1;4) – середина АС и

, .

Уравнения перпендикуляров к хордам АВ и АС, проходящих через их середины, имеют вид:

и

или

и .

Точка пересечения этих прямых Р(-1;2).

Для нахождения радиуса найдем расстояние между точками и :

.

Запишем уравнение окружности:

.

3. Эллипс и его уравнение.

Определение. Эллипсом называется геометрическое место всех точек плоскости, сумма расстояний которых до двух данных точек плоскости, называемых фокусами, есть величина постоянная.

Каноническое уравнение эллипса:

,

Где а– большая полуось, в– малая полуось,

– эксцентриситет эллипса.

Прямую, на которой расположены фокусы эллипса F1 u F2, называют фокальной осью, а

и – фокальными радиусами.

Прямые x= называют директрисами эллипса.

Пример 3. Убедитесь, что уравнение

определяет эллипс. Найдите полуоси, координаты фокусов, эксцентриситет, уравнения директрис.

Решение. Приведем уравнение

к каноническому виду

откуда , . Из условия найдем , то есть .

Тогда , а уравнение директрис x= (±25)/ .

Пример 4. Доказать, что уравнение

определяет эллипс. Найти координаты его центра симметрии.

Решение. Преобразуем данное уравнение, выделив полные квадраты по и по :

Обозначим , где – новые переменные. Тогда уравнение примет вид или, приводя к каноническому виду, .

Сравнивая полученное уравнение с уравнением (20) убеждаемся, что кривая – эллипс. Центр его симметрии находится в точке (-2;2).

4. Гипербола и её уравнение.

Определение. Гиперболой называется геометрическое место точек плоскости, разность расстояний которых до двух данных точек и плоскости, называемых фокусами, есть величина постоянная.

Каноническое уравнение гиперболы:

Точки , называются вершинами гиперболы, прямые являются асимптотами гиперболы, – действительная полуось, – мнимая полуось, – эксцентриситет гиперболы, прямые – ее директрисы.

Пример 5. Написать уравнение гиперболы и ее асимптот, если фокусы гиперболы находятся в точках и длина вещественной оси равна 6.

Решение. По условию , тогда из формулы найдем . Каноническое уравнение гиперболы: уравнения асимптот: .

Пример 6. Написать уравнение гиперболы, проходящей через точку , асимптоты которой .

Решение. Из уравнения асимптот следует, что . Уравнение гиперболы будем искать в виде . Так как точка лежит на гиперболе, то . Решая систему найдем , . Получаем или .

Пример 7. Доказать, что уравнение определяет гиперболу. Написать уравнения ее асимптот.

Решение. Выделим полные квадраты по и по :

Обозначая и деля обе части уравнения на 9, получим каноническое уравнение , откуда следует, что , центр находится в точке то есть . Учитывая, что асимптоты проходят через точку и , запишем их уравнения:

5. Парабола и её уравнение.

Определение. Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки плоскости, называемой фокусом, и данной прямой, называемой директрисой.

Каноническое уравнение параболы

Где (параметр параболы) – расстояние между фокусом и директрисой, а уравнение ее директрисы .

Так как уравнение параболы содержит , то она симметрична относительно оси . Ось симметрии параболы называется осью параболы.

Вершиной параболы называется точка пересечения параболы с ее осью симметрии.

Пример 8. Парабола с вершиной в начале координат проходит через точку и симметрична относительно оси . Написать ее каноническое уравнение.

Решение. Подставляя координаты точки в уравнение (22), найдем, что . Значит, уравнение параболы .

Пример 9. Доказать, что уравнение определяет параболу. Найти значение ее параметра и координаты вершины.

Решение. Выделяя полный квадрат, получим . Если положить то уравнение примет вид . Сравнивая его с каноническим уравнением (22), находим , откуда . Вершина параболы находится в точке , , то есть .

Для самостоятельного решения.

1. Найти координаты центра и радиус окружности .

2. Составить уравнение окружности, если она проходит через точки и , а центр ее лежит на прямой .

3. Найти площадь четырехугольника, две вершины которого лежат в фокусах эллипса , а две другие совпадают с концами его малой оси.

4. Составить уравнение хорды параболы , которая проходит через ее вершину перпендикулярно прямой .

5. На параболе найти точку , ближайшую к прямой , и вычислить расстояние от точки до прямой.

6. Найти площадь треугольника, образованного асимптотами гиперболы и прямой .

7. Дана окружность . Найти уравнение радиусов, проведенных из центра в точки пересечения окружности с осью ординат, а также угол между этими радиусами.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Охарактеризуйте уравнение линии второго порядка.

2. Как проверить лежит ли точка на линии?

3. Охарактеризуйте окружность и запишите её уравнение.

4.При каких условиях уравнение линии второго порядка определяет окружность?

5. Охарактеризуйте эллипс и запишите его уравнение

6. Что характеризует эксцентриситет эллипса?

7. При каких условиях уравнение линии второго порядка определяет гиперболу?

8.Какую роль играют асимптоты для гиперболы?

9. Охарактеризуйте параболу и запишите его уравнение

10.При каких условиях уравнение линии второго порядка определяет параболу?


источники:

http://www.evkova.org/linii-vtorogo-poryadka

http://multiurok.ru/files/lektsiia-po-matematike-linii-vtorogo-poriadka-okru.html