Уравнение лоренца для электромагнитного поля

6.7. Преобразования Лоренца для электромагнитного поля

Связь между электричеством и магнетизмом не исчерпывается похожестью ряда соотношений. В сущности, оба эти поля суть разные проявления единого электромагнитного поля. В курсе механики мы говорили о принципе относительности, о том, что все законы природы должны быть инвариантными при переходе из одной инерциальной системы отсчета в другую. Однако электрическое и магнитное поля сами по себе, по отдельности, явно не удовлетворяют этому принципу. Действительно, находясь в инерциальной системе отсчета К, возьмем заряд q, движущийся прямолинейно и равномерно со скоростью v. Он создает кулоновское электрическое поле и, помимо этого, магнитное поле, вектор индукции которого дается выражением (6.2). Свяжем с зарядом систему отсчета К ‘, которая также будет инерциальной. В этой системе отсчета заряд покоится, и создаваемое им поле будет чисто электростатическим. Выходит, электрическое и магнитное поля не имеют абсолютного характера. При переходе к другой системе отсчета они должны преобразовываться друг через друга (рис. 6.33).

Рис. 6.33. Заряд покоится в движущейся системе отсчета

Вспомним преобразования Лоренца для пространственных координат и времени

Не забудем, что аналогичные преобразования связывают импульс и энергию частицы в разных системах отсчета

Станем ли мы теперь удивляться, что электрическое и магнитное поля в разных системах отсчета также связаны преобразованиями Лоренца

Напомним, что величины со штрихом относятся к системе отсчета К ‘, которая движется относительно системы К вдоль оси х со скоростью V.

Из преобразований Лоренца следует, что электрическое поле движущегося заряда вытягивается в направлении перпендикулярном скорости (рис. 6.34).

Рис. 6.34. Электрическое поле движущегося заряда

Заметим, что формулы преобразований Лоренца для электромагнитного поля отличаются от преобразований для пространства-времени или энергии-импульса тем, что не преобразуются компоненты полей вдоль линии движения системы отсчета К ‘ (то есть вдоль оси ). Чтобы проиллюстрировать это, рассмотрим лабораторную систему отсчета К, в которой имеется электрическое поле Е, но нет магнитного (В = 0). В каком случае наблюдатель движущейся системы отсчета К ‘ тоже будет наблюдать лишь чисто электрическое поле Е ‘ без примеси магнитного (В ‘ = 0)? Ответ следует из формул (6.38) при подстановке туда нулевых значений для В, В ‘: из второго уравнения сразу вытекает Еy = Еz = 0, а из первого — Еу = Ez = 0. Иными словами, такое возможно, когда электрическое поле (не обязательно однородное) направлено вдоль движения системы отсчета К ‘.

Уравнения электромагнетизма изначально были инвариантны относительно этих преобразований, так что теория относительности вполне безболезненно совместилась с электромагнитной теорией, в то время как классическая механика подверглась существенной ревизии. Вместо обоснования справедливости преобразований (6.38), что выходит за рамки нашего курса, мы познакомимся еще с одним их следствием.

Поскольку мы пока занимаемся в основном нерелятивистской физикой, упростим преобразования Лоренца для случая, когда скорость системы отсчета К ‘ много меньше скорости света: V << с. В этом случае, как уже отмечалось, квадратные корни

и преобразования (6.38) принимают вид

Эти уравнения можно записать в векторной форме

Вернемся к нашей заряженной частице, покоящейся в системе К ‘. В этой системе магнитное поле отсутствует (В ‘ = 0), а электрическое поле дается законом Кулона

Поскольку предполагается V << с, мы используем преобразования Галилея для пространственных координат и временных интервалов, так что радиус-вектор, проведенный от частицы в точку наблюдения, одинаков в обеих системах отсчета: r = r ‘. Подставляя указанные выражения для В ‘, Е ‘ в преобразования (6.40), получаем

Здесь мы использовали соотношение (6.3)

Первое уравнение (6.41) — обычное кулоновское поле заряда q, второе — магнитное поле движущегося заряда (6.2). Таким образом, даже классический магнетизм — это проявление релятивистских эффектов. Электрическое и магнитное поля оказываются неразрывно связанными друг с другом в единое электромагнитное поле, конкретное проявление которого зависит от системы отсчета.

Пример. Самолет летит горизонтально со скоростью 250 м/с в магнитном поле Земли с магнитной индукцией 50 мкТл, направленной вертикально вниз. Какое электромагнитное поле будут наблюдать пассажиры самолета?

Решение. Направим ось системы лабораторной отсчета К, связанной с Землей, вдоль маршрута самолета, так что его скорость запишется в виде

Ось 0z направим вертикально вверх, так что магнитная индукция описывается вектором

Нам надо найти электрическое и магнитное поля в движущейся системе отсчета К ‘, связанной с самолетом. Поскольку скорость самолета много меньше скорости света, мы можем применить формулы (6.40). Для удобства, однако, мы используем обратные формулы, получаемые заменой штрихованных величин на нештрихованные и изменением знака скорости: V = –v:

Так как в лабораторной системе электрического поля нет (Е = 0), то из второго уравнения сразу следует, что В ‘ = В: магнитное поле для авиапассажиров останется тем же, что и для проводивших их в полет родственников. Однако, в самолете появится еще и электрическое поле. Его напряженность, как вытекает из первого уравнения, равна

Мы использовали здесь тот факт, что векторное произведение двух ортов дает третий орт

60 м на их концах создается разность потенциалов — величина небольшая, но доступная измерениям.

Дополнительная информация

ЛО́РЕНЦА — МА́КСВЕЛЛА УРАВНЕ́НИЯ

  • В книжной версии

    Том 18. Москва, 2011, стр. 47-48

    Скопировать библиографическую ссылку:

    ЛО́РЕНЦА – М А́КСВЕЛЛА УРАВНЕ́НИЯ, осн. урав­не­ния мик­ро­ско­пич. клас­сич. элек­тро­ди­на­ми­ки, оп­ре­де­ляю­щие элек­тро­маг­нит­ные по­ля, соз­да­вае­мые отд. за­ря­жен­ны­ми час­ти­ца­ми, дви­жу­щи­ми­ся (или по­коя­щи­ми­ся) в ва­куу­ме. Л. – М. у. ле­жат в ос­но­ве элек­трон­ной тео­рии, раз­ра­бо­тан­ной Х. А. Ло­рен­цем в кон. 19 – нач. 20 вв. Л. – М. у. яв­ля­ют­ся след­ст­ви­ем пе­ре­но­са фе­но­ме­но­ло­ги­че­ских Мак­свел­ла урав­не­ний, оп­ре­де­ляю­щих на­блю­дае­мое мак­ро­ско­пи­че­ское (ус­ред­нён­ное) элек­тро­маг­нит­ное по­ле, на мик­ро­ско­пи­че­ское (не­по­сред­ст­вен­но не­на­блю­дае­мое) элек­тро­маг­нит­ное по­ле и име­ют вид: $$\textrm \,\boldsymbol = -\frac<\partial \boldsymbol b><\partial t>, \quad \textrm\,\boldsymbol=μ_0 \left( \sum_iρ_iv_i +ε_0\frac<\partial \boldsymbol><\partial t>\right),\\ \textrm

    \,\boldsymbol=\frac<1><ε_0>\sum_i ρ_i,\quad \textrm
    \,\boldsymbol=0,$$ где $\boldsymbol$ и $\boldsymbol$ – на­пря­жён­ность элек­три­че­ско­го и ин­дук­ция маг­нит­но­го мик­ро­ско­пич. по­лей, $ρ_i$ – объ­ём­ная плот­ность элек­трич. за­ря­дов, $\boldsymbol_i$ – их ско­рость, $μ_0=4π·10^<–7>$ Гн/м – маг­нит­ная по­сто­ян­ная, $ε_0=1/ μ_0c^2$ – элек­трич. по­сто­ян­ная, $c$ – ско­рость рас­про­стра­не­ния элек­тро­маг­нит­ных волн (ско­рость све­та) в ва­ку­уме. Для фи­зич. мо­де­ли то­чеч­но­го за­ря­да ве­ли­чи­ной $q_i$ , дви­жу­ще­го­ся по за­ко­ну $\boldsymbol_i(t)$ со ско­ро­стью $\boldsymbol_i=\boldsymbol_i$ , плот­ность за­ря­да $ρ_i(\boldsymbol,t)=q_i δ (\boldsymbol-\boldsymbol_i(t))$ , где $δ(\boldsymbol)=δ(x)δ(y)δ(z)$ – дель­та-функ­ция Ди­ра­ка, $\boldsymbol_i$ – ра­ди­ус-век­тор за­ря­да, $t$ – вре­мя.

    Сила Лоренца: определение, формула, применение на практике

    Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

    Определение и формула

    Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

    Рис. 1. Выводы Лоренца

    Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

    Учитывая, что

    (здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

    Так, как nSdl общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

    Модуль F вычисляется по формуле:

    Из формулы следует:

    1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
    2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
    3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

    Рис. 2. Заряженная частица между полюсами магнитов Рис. 3. Ориентация вектора в зависимости от полярности заряда

    Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

    Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

    В чём измеряется?

    Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10 -n Н, где 0

    Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

    Направление силы Лоренца

    Мы уже упоминали, что направление возникшей силы Лоренца, кроме магнитных параметров, определяется (в том числе) полярностью заряда. Если бы мы имели возможность наблюдать заряженную элементарную частицу, пребывающую в магнитном поле, то по вектору её перемещения можно было бы определить направление вектора силы F.

    Но на практике наблюдать элементарные заряды очень сложно из-за крохотных размеров. Поэтому для определения этого направления применяют способ, известен, как правило левой руки (рис. 4).

    Рис. 4. Нахождение вектора силы Лоренца

    Ладонь необходимо развернуть так, чтобы вектор индукции входил в неё. В случае с положительным зарядом, вытянутые пальцы располагают по движению частицы. (для отрицательного заряда пальцы направляют в противоположную сторону). Большой палец под прямым углом указывает искомое направление.

    Если известна ориентация вектора скорости частицы, то определить направления остальных векторов можно, применяя правило правой руки, которое понятно из рисунка 5.

    Рис. 5. Пример применения правила правой руки

    Применение на практике

    Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

    Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров Рис. 6). Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

    Рис. 6. Применение учения Лоренца

    На рисунке справа изображена схема масспектрографа – прибора для разделения заряженных частиц по величине их зарядов.

    Ещё один пример – бесконтактный электромагнитный метод определения скорости течения (вязкости) электропроводных жидкостей. Методика может быть применима к расплавленным металлам, например к алюминию. Бесконтактный способ определения вязкости очень полезен при работе с агрессивными жидкими электропроводными веществами (рис. 7).

    Рис. 7. Измерение текучести жидких веществ

    Работа ускорителей была бы невозможной без участия силы Лоренца. В этих устройствах заряженные частицы удерживаются и разгоняются до околосветовых скоростей благодаря электромагнитам, расположенным вдоль кольцевой трассы.

    Мощная электронная лампа – Магнетрон также работает на принципе взаимодействия электронов с магнитными полями, которые направляют высокочастотное излучение в нужном направлении. Магнетрон является основной рабочей деталью микроволновых печей.

    На основании действия силы Лоренца создано много других устройств, используемых на практике.


    источники:

    http://bigenc.ru/physics/text/2158320

    http://www.asutpp.ru/sila-lorentsa.html