Уравнение максвелла включающее в себя ток смещения

Уравнение максвелла включающее в себя ток смещения

Теперь Тесла понимал, почему его переменные заряды высокой частоты из первых опытов никогда не выказывали таких мощных проявлений. Именно прерывистость, яростный импульсный разряд, придавал этому неожиданному «газообразному» компоненту возможность свободно перемещаться. Импульсы, однонаправленные импульсы, были единственной причиной, с помощью которой мог быть высвобожден этот потенциал. Синусоидальные колебания в этом отношении были абсолютно бесполезны.

Секреты свободной энергии холодного электричества. Глава 2. Розеттский камень

§25. Ток смещения и система уравнений Максвелла

Мы установили, что изменяющееся магнитное поле порождает изменяющееся электрическое поле, которое в свою очередь порождает изменяющееся магнитное поле и т. д. В результате образуются сцепленные между собой электрическое и магнитное поля, составляющие электромагнитную волну. Она “отрывается” от зарядов и токов, которые ее породи­ли. Способ существования электромагнитной волны делает невозможным ее неподвижность в пространстве и постоянство напряженности во времени.

Постоянный ток не протекает в цепи с конденсатором, а в случае переменного напряжения в цепи ток протекает через конденсатор. Для постоянного тока конденсатор – разрыв в цепи, а для переменного этого разрыва нет. Поэтому необходимо заключить, что между обкладками конденсатора происходит некоторый процесс, который как бы замыкает ток проводимости. Этот процесс между обкладками конденсатора был назван током смещения. Напряженность поля между обкладками конденсатора . Из граничного условия для вектора следует, что диэлектрическое смещение между обкладками , а сила тока в цепи равна . Тогда

, (25.1)

А значит процессом, замыкающим ток проводимости в цепи, является изменение электрического смещения во времени. Плотность тока

. (25.2)

Существование тока смещения было постулировано Максвеллом в 1864 г. и затем экспериментально подтверждено другими учеными.

Почему скорость изменения вектора смещения называется плотностью тока? Само по себе математическое равенство величины , характеризующей процесс между обкладками конденсатора, т. е. равенство двух величин, относящихся к разным областям пространства и имеющим различную физическую природу, не содержит в себе, вообще говоря, какого-то физического закона. Поэтому называть ”током” можно только формально. Для того чтобы придать этому названию физический смысл, необходимо доказать, что обладает наиболее характерными свойствами тока, хотя и не представляет движения электрических зарядов, подобного току проводимости. Главным свойством тока проводимости является его способность порождать магнитное поле. Поэтому решающим является вопрос о том, порождает ли ток смещения магнитное поле так же, как его порождают ток проводимости, или, более точно, порождает ли величина (25.2) такое же магнитное поле, как равная ей объемная плотность тока проводимости? Максвелл дал утвердительный ответ на этот вопрос. Однако наиболее ярким подтверждением порождения магнитного поля током смещения является существование электромагнитных волн. Если бы ток смещения не создавал магнитного поля, то не могли бы существовать электромагнитные волны.

Уравнение Максвелла с током смещения.

Порождение магнитного поля токами проводимости описывается уравнением

(25.3)

Учитывая порождение поля током смещения, необходимо обобщить это уравнение в виде

(25.4)

Тогда, принимая во внимание (25.2), окончательно получаем уравнение

, (25.5)

Являющееся одним из уравнений Максвелла.

Система уравнений Максвелла.

Полученная в результате обобщения экспериментальных данных, эта система имеет вид:

, (25.6)

Эти уравнения называются полевыми и справедливы при описании всех макроскопических электромагнитных явлений. Учет свойств среды достигается уравнениями

, (25.7)

Называемыми обычно Материальными уравнениями среды. Среды линейны, если и нелинейны если . Материальные уравнения, как правило, имеют вид функционалов.

Рассмотрим физический смысл уравнений.

Уравнение I выражает закон, по которому магнитное поле порождается токами проводимости и смещения, являющимися двумя возможными источниками магнитного поля. Уравнение II выражает закон электромагнитной индукции и указывает на изменяющееся магнитное поле как на один из возможных источников, порождающих электрическое поле. Вторым источником электрического поля являются электрические заряды (уравнение IV). Уравнение III говорит о том, что в природе нет магнитных зарядов.

Полнота и совместность системы. Единственность решения.

В случае линейной среды можно исключить из полевых уравнений (25.6) величины в результате чего они становятся уравнениями относительно векторов и , т. е. относительно шести неизвестных (у каждого вектора по 3 проекции). С другой стороны число скалярных уравнений в (25.6) равно восьми. Получается, что система состоит из 8 уравнений для 6 неизвестных. Однако в действительности система не переполнена. Это обусловлено тем, что уравнения I и IV, а также II и III имеют одинаковые дифференциальные следствия и поэтому связаны между собой.

Чтобы в этом убедиться возьмем от уравнения II и производную по времени от уравнения III. Получим:

,

Т. е. получили одинаковые дифференциальные следствия. Аналогично возьмем от уравнения I:

.

С из уравнения непрерывности следует, что . Тогда

или . Из IV следует, что

Наличие двух дифференциальных связей и делает систему уравнений Максвелла совместной. Более подробный анализ показывает, что система является полной, а ее решение однозначно при заданных начальных и граничных условиях.

Доказательство единственности решения в общих чертах сводится к следующему. Если имеется два различных решения, то их разность вследствие линейности системы тоже является решением, но при нулевых зарядах и токах и нулевых начальных и граничных условиях. Отсюда, пользуясь выражением для энергии электромагнитного поля и законом сохранения энергии заключаем, что разность решений тождественно равна нулю, т. е. решения одинаковы. Тем самым единственность решения уравнений Максвелла доказана.

9.2. Ток смещения

Дж.К. Максвелл (рис. 9.2) был первым, кто задался вопросом о модификации четвертого утверждения. Никаких экспериментальных фактов, к этому подводящих, в то время известно не было. Из четвертого утверждения следует, что токи, порождающие вихревое магнитное поле, должны быть замкнутыми, они нигде не могут прерываться. Действительно, на один и тот же контур L можно натянуть множество поверхностей S. Пусть, скажем, мы выберем две из них — S1 и S2. Так как левая часть (9.4) для них одинакова, то будут равны и правые части. Это значит, что весь ток, вошедший через S1, должен выйти через поверхность S2. Так с обычными токами и происходит. Но бывают нестационарные случаи, когда в каких-то точках меняется плотность электрического заряда. Линии тока будут кончаться в этих местах, что противоречит (9.4).

Рис. 9.2. Дж.К. Максвелл (1831–1879) — английский физик и математик

Чтобы проиллюстрировать подобные случаи, рассмотрим уже знакомый процесс разрядки конденсатора. Пусть имеются две пластины с зарядами +q и –q. Пока цепь разомкнута, равные и разноименные заряды создают в пространстве между пластинами постоянное электрическое поле. Ток по проводам не идет, и вокруг цепи нет магнитного поля (рис. 9.3-1).

Рис. 9.3. Токи смещения в конденсаторе: 1 — начальное состояние конденсатора, 2 — изменение поля в процессе разрядки. Производная напряженности электрического поля по времени направлена в ту же сторону, что и вектор плотности тока, и равна ему по величине

При разрядке конденсатора через проводник, соединяющий пластины, потечет ток от Р к N (рис. 9.3-2). Уменьшение заряда на пластине на величину dq означает, что это же количество электричества протечет по проводу, подсоединенному к пластине (закон сохранения заряда).

Рис. 9.4. Обкладки конденсатора отмечены синим. Поверхность S2 состоит из плоской поверхности, параллельной обкладкам конденсатора и боковой цилиндрической поверхности

которое мы хотели бы проверить на непротиворечивость.

Интегрируем его по поверхности S1 (рис. 9.4). Получаем

Из этого равенства обычно получают величину магнитного поля B для бесконечно длинного проводника. Напомним, что поверхность, по которой ведется интегрирование, может иметь любую форму, при условии, что она опирается на контур G. Воспользуемся этим и интегрируем это же уравнение (9.8) по поверхности S2. Получаем

Здесь краевыми эффектами пренебреженно, Интеграл по боковой (цилиндрической) поверхности равен нулю, если выбрать радиус цилиндра достаточно большим. Выражения (9.9) и (9.10) противоречат друг другу. Значит, уравнение (9.8) неверно и его надо изменить. Простейший путь — добавить в правую часть уравнения (9.8) неизвестный вектор, который мы обозначим как

Найдем неизвестный вектор , полагая, что он не равен нулю лишь между обкладками конденсатора. Для этого интегрируем отдельно по поверхностям S1 и S2 и приравниваем результаты. Интеграл по S1 вычислен в (9.9), а интеграл по S2 есть

— вместе с (9.8a) получили уравнение Максвелла

Максвелл назвал величину

плотностью тока смещения:

Так как численные значения плотности тока смещения jсм и плотности тока проводимости j равны, то, следовательно, линии плотности тока проводимости внутри проводника непрерывно переходят в линии плотности тока смещения между пластинами (обкладками конденсатора).

Если ввести понятие полного тока, который включает в себя сумму тока проводимости и тока смещения, то для его плотности имеем

На примере конденсатора мы обнаружили, что полный ток будет замкнут: его линии продолжаются, нигде не прерываясь (даже в пространстве между пластинами конденсатора). По этому своему свойству именно полный ток должен стоять в правой части уравнения (рис. 9.5). В этом и состояла идея Максвелла.

Рис. 9.5. Лампочка, подключенная к сети переменного тока через конденсатор,
постоянно горит, так как ток проводимости внутри проводника переходит в ток смещения между пластинами конденсатора

В результате мы можем сформулировать (рис. 9.6)

Утверждение 4.

Вихревое магнитное поле создается полным током, то есть током проводимости и током смещения, вызванным изменяющимся электрическим полем.

Рис. 9.6. Гипотеза Максвелла. Изменяющееся электрическое поле порождает вихревое магнитное поле

Математическим выражением этого утверждения является уравнение, получаемое из (9.11),

Таким образом, Максвелл предсказал новое явление, в известном смысле обратное электромагнитной индукции. Эксперимент подтвердил, что магнитное поле действительно может создаваться изменяющимся во времени электрическим полем (рис. 9.7).

Рис. 9.7. Переменное электрическое поле между пластинами конденсатора порождает вихревое магнитное поле, которое измеряется с помощью проволочной квадратной рамки и отображается на экране монитора

В ряду этих экспериментов первым и главным было экспериментальное доказательство существования электромагнитных волн, выполненное немецким физиком Генрихом Герцем в 1888 году (рис. 9.8). Интересно, что сам Герц не верил в их существование и своими экспериментами хотел опровергнуть теорию Максвелла, созданную им за 20 лет до этого в 1865 году.

Рис. 9.8. Генрих Герц (1857 — 1894) — немецкий физик.

Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства — поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света (рис. 9.9).

Рис. 9.9. Гармоническая электромагнитная волна, бегущая вдоль оси z . Вектора напряженности электрического поля, индукции магнитного поля и скорости волны взаимно перпендикулярны

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи, продемонстрированной А.С. Поповым в 1895 г. (рис. 9.10).

Рис. 9.10. А.С. Попов (1859–1905) — русский физик и электротехник

Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p(t) которого быстро изменяется во времени. Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 9.11).

Рис. 9.11. Элементарный электрический диполь, совершающий гармонические колебания

Рис. 9.12 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Рис. 9.12. Излучение элементарного электрического диполя. Дипольный момент направлен вдоль оси z, силовые линии электрического поля лежат в плоскости листа, а силовые линии магнитного поля перпендикулярны плоскости листа

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.


источники:

http://webpoliteh.ru/25-tok-smeshheniya-i-sistema-uravnenij-maksvella/

http://online.mephi.ru/courses/physics/electricity/data/course/9/9.2.html