Уравнение массопередачи в локальной форме

Уравнения массоотдачи и массопередачи в локальной форме.

Запишем уравнения массоотдачи для двух фаз G и L. В качестве движущих сил используем разность концентраций.

Предположим, что распределяемый компонент переходит из фазы G в фазу L:

(1.15)

(1.16)

где х и у – рабочие концентрации, распределяемого компонента в фазах L и G

соответственно. Используя допущение об отсутствие сопротивления переносу вещества со стороны межфазной поверхности равновесии на границе раздела фаз, запишем:

(1.17)

Если коэффициент распределения не зависит от состава фазы то

.

Уравнение (1.16) с учетом (1.17) представим в виде:

а уравнение (1.15) в виде

Последние соотношения сложим:

(1.18)

или(1.19)

Уравнение (1.19) выражает аддитивность фазовых сопротивлений.

Если движущая сила процесса выражается в концентрациях другой фазы L, то уравнение массопередачи примет вид:

(1.20)

(1.19)

Итак, мы получили уравнения массопередачи (1.18) и (1.20), движущими силами в которых являются разности рабочей и равновесной концентрации компонента в одной из фаз. Использование коэффициентов массопередачи Ку или Кх зависит от выбора фазы, через концентрацию, которой записана движущая сила.

Связь между Ку и Кх устанавливается по формулам (1.18) и (1.20) и имеет вид:

(1.22)

В частных случаях, когда m=const получаем:

Рис.1.6. Определение коэффициента распределения .

В общем случае зависимость представляет собой выпуклую или вогнутую кривую. Однако в рабочем диапазоне изменения параметров эту кривую можно выпрямить, выразив через .Итак имеем:

, , ;

Дата добавления: 2016-05-25 ; просмотров: 600 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнения массоотдачи и массопередачи в локальной форме

Уравнения массоотдачи и массопередачи в локальной форме — раздел Философия, Массообмен. Основные стадии и закономерности массопереноса Запишем Уравнения Массоотдачи Для Двух Фаз G И L. В Качестве Движущих Сил Исп.

Запишем уравнения массоотдачи для двух фаз G и L. В качестве движущих сил используем разность концентраций. Предположим, что распределяемый компонент переходит из фазы G в фазу L:

где х и у – рабочие концентрации, распределяемого компонента в фазах L и G, соответственно, индекс г – указание на отношение данного параметра к межфазовой границе.

Используя допущение об отсутствие сопротивления переносу вещества со стороны межфазной поверхности при равновесии на границе раздела фаз, запишем: (23)

Если коэффициент распределения не зависит от состава фазы, то

Уравнение (22) с учетом (23) представим в виде

а уравнение (21) — в виде .

Последние соотношения сложим:

И поскольку по определению , (24)

Уравнение (25) выражает аддитивность фазовых сопротивлений.

Если движущая сила процесса выражается в концентрациях другой фазы L, то уравнение массопередачи примет вид:

Итак, мы получили уравнения массопередачи (24) и (26), движущими силами в которых являются разности рабочей и равновесной концентрации компонента в одной из фаз. Использование коэффициентов массопередачи Ку или Кх зависит от выбора фазы, через концентрацию которой записана движущая сила.

Связь между Ку и Кх устанавливается по формулам (24) и (26) и имеет вид:

В частных случаях, когда m = const, получаем:

Рис.1.6. Определение коэффициента распределения .

В общем случае зависимость представляет собой выпуклую или вогнутую кривую. Однако в рабочем диапазоне изменения параметров эту кривую можно выпрямить, выразив через .Итак имеем:

Эта тема принадлежит разделу:

Массообмен. Основные стадии и закономерности массопереноса

Материальный баланс.. в стационарных условиях закон сохранения массы для всего аппарата в виде.. соответственно расходы жидкой и газовой фаз х у концентрация распределяемого компонента в фазах н начальное к конечное состояние..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уравнения массоотдачи и массопередачи в локальной форме

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Массообмен. Основные стадии и закономерности массопереноса
Основная задача химико-технологического процесса состоит в направленном изменении макроскопических свойств участвующих в процессе веществ: состава, агрегатного состояния, давления P и температуры Т

Фазовые равновесия
Предельное состояние системы – подвижное равновесие, при котором не происходит изменений макроскопических свойств веществ. Равновесным называют такое состояние системы, при котором перенос субстанц

Уравнения рабочих и равновесных линий
Предположим, что перенос распределяемого компонента происходит из фазы в фазу . Рис.1.2. Схема массообменного процесса в противоточном аппарате. Из

Интегральная форма уравнений массоотдачи и массопередачи
Проинтегрировав уравнения (21) и (22) по величине межфазной поверхности всего аппарата или его участка можно получить уравнения массоотдачи в интегральной форме: (29)

Объёмные коэффициенты массоотдачи и массопередачи
В реальном аппарате определить поверхность контакта фаз, зачастую, бывает сложно, т.к. она может складываться из поверхности струй, пузырей, капель и т.д. Необходимо получить уравнения массотдачи и

Число и высота единиц переноса
Для наиболее распространённого типа массообменных аппаратов – цилиндрические вертикальные колонны – основным размером, зависящим от скорости массопередачи, является высота Н. Если S (площа

Аналогия тепло — и массообмена
Аналогия подразумевает возможность использования результатов, полученных для межфазного переноса одного вида субстанции, применительно к описанию переноса другого вида субстанции. Это возможно, ког

Упрощенные модели массоотдачи
Коэффициент массоотдачи характеризует скорость переноса вещества внутри фазы конвективной и молекулярной диффузией одновременно. Коэффициент массоотдачи зависит от многих факторов:

Основы массопередачи

12.1. ОБЩИЕ СВЕДЕНИЯ

Массопередача имеет место в процессах абсорбции, перегонки и ректификации, экстракции и выщелачивания, сушки, адсорбции, кристаллизации и др.

При абсорбции происходит селективное поглощение газов или паров жидкими поглотителями — абсорбентами, т. е. имеет место переход вещества из газовой или паровой фазы в жидкую.

При перегонке и ректификации жидкая смесь разделяется на составляющие компоненты. Происходит переход веществ из жидкой фазы в паровую и из паровой в жидкую.

При экстракции происходит извлечение одного или нескольких веществ из растворов или твердых веществ с помощью растворителей. При экстракции в системе жидкость — жидкость имеет место переход вещества из одной жидкой фазы в другую жидкую фазу.

Процесс извлечения веществ из твердого тела с помощью растворителя называют выщелачиванием. При выщелачивании вещество переходит из твердой фазы в жидкую.

При адсорбции происходит избирательное поглощение газов, паров или растворенных в жидкостях веществ твердым поглотителем — адсорбентом, способным поглощать один или несколько компонентов из их смеси. Процесс используется во многих производствах, где из смеси газов, паров или растворенных веществ необходимо извлечь тот или иной компонент. При адсорбции вещества переходят из газовой или жидкой фазы в твердую.

Сушка — это удаление влаги из твердых или жидких влажных материалов путем ее испарения. В этом процессе имеет место переход влаги из твердого влажного материала в паровую или газовую фазу.

При кристаллизации из жидкой фазы выделяется вещество в виде кристаллов. При этом происходит переход вещества из жидкой фазы в твердую в результате возникновения и роста кристаллов в растворе.

12.2. КИНЕТИКА МАССОПЕРЕДАЧИ

Массопередача — процесс перехода вещества (или нескольких веществ) из одной фазы в другую в направлении достижения равновесия.

В массообмене участвуют, как минимум, три вещества: распределяющее вещество (или вещества), составляющее первую фазу; распределяющее вещество (или вещества), составляющее вторую фазу; распределяемое вещество (или вещества), которое переходит из одной фазы в другую.

Обозначим первую фазу , вторую — , а распределяемое вещество — М. Все массообменные процессы обратимы, поэтому распределяемое вещество может переходить из фазы в фазу и наоборот в зависимости от концентрации вещества в фазах.

Пусть распределяемое вещество находится первоначально только в фазе и имеет концентрацию . В фазе в начальный момент распределяемое вещество отсутствует, т. е. концентрация его в этой фазе .

Если распределяющие фазы привести в соприкосновение друг с другом, начинается переход распределяемого вещества из фазы в фазу и с появлением вещества М в фазе начинается обратный переход его из фазы в фазу . До некоторого момента времени число частиц распределяемого вещества М, переходящих в единицу времени из фазы в фазу , больше, чем число частиц, переходящих из фазы в фазу . Однако конечным результатом является переход вещества М из фазы в фазу . По истечении определенного времени скорости прямого и обратного перехода вещества М в фазах и становятся одинаковыми. Такое состояние системы называется равновесным. При равновесии устанавливается строго определенная зависимость между концентрациями распределяемого вещества в фазах. Такие концентрации называют равновесными.

При равновесии каждой концентрации соответствует равновесная концентрация , и наоборот, каждой концентрации соответствует определенная равновесная концентрация .

В условиях равновесия существуют определенные в каждом конкретном случае зависимости между концентрациями:

; . (12.1)

Эти зависимости определяются экспериментально и называются равновесными зависимостями.

Равновесные зависимости изображаются графически кривой или в частном случае прямой линией. На рис. 12.1 показана зависимость равновесной концентрации у компонента в газовой фазе от его концентрации в жидкой фазе при постоянных давлении и температуре.

Рис. 12.1 Диаграмма равновесия при p=const и t=const

Отношение концентраций компонента в фазах в условиях равновесия называется коэффициентом распределения.

Коэффициент распределения геометрически выражает тангенс угла наклона линии равновесия. В случае кривой линии равновесия коэффициент распределения является переменной величиной.

Конкретный вид законов равновесия применительно к различным процессам массопередачи будет рассматриваться в соответствующих главах.

Равновесные зависимости позволяют определить не только направление процесса, но и скорость перехода распределяемого вещества из одной фазы в другую.

Разность между фактической и равновесной концентрациями, характеризующая степень недостижения равновесия, является движущей силой массообменных процессов.

Расчет движущих сил и коэффициентов скорости массообменных процессов составляет кинетику массопередачи.

Основные уравнения массопередачи могут быть получены из общего уравнения кинетики. Согласно этому уравнению скорость массообменных процессов прямо пропорциональна движущей силе процесса и обратно пропорциональна диффузионному (массообменному) сопротивлению.

Обозначив величину, обратную диффузионному сопротивлению, через (где — диффузионное, или массообменное, сопротивление), запишем

, (12.2)

где: М – количество вещества, перешедшего из одной фазы в другую; F – площадь поверхности массопередачи; τ – продолжительность процесса; k – коэффициент скорости процесса, называемый в теории массопередачи; Δ – движущая сила.

Нетрудно видеть, что является скоростью массопередачи, отнесенной к единице контакта фаз.

Если отнесено к единице времени, имеем

. (12.3)

При для всей поверхности массообмена

. (12.4)

Уравнения (12.3) и (12.4) называют основными уравнениями массопередачи. Согласно этим уравнениям количество вещества, перенесенного из ядра одной фазы в ядро другой фазы, пропорционально разности его концентраций в ядрах фаз, площади поверхности фазового контакта и продолжительности процесса.

Коэффициент массопередачи показывает, какое количество вещества переходит из одной фазы в другую в единицу времени через единицу поверхности фазового контакта при движущей силе, равной единице.

Коэффициенты массопередачи в зависимости от единиц, в которых выражены движущая сила и количество распределяемого вещества, могут выражаться в м/с, кг/(ед. дв. силыс), кмоль/ (ед. дв. силыс).

12.3. МАТЕРИАЛЬНЫЙ БАЛАНС МАССООБМЕННЫХ ПРОЦЕССОВ

Рассмотрим схему элементарного массообменного аппарата, в котором происходит массообмен между двумя движущимися прямотоком фазами. Массовые скорости фаз относительно поверхности их раздела, выраженные в килограммах инертного вещества в час, обозначим и , а концентрации распределяемого вещества (в килограммах на килограмм инертного вещества) — соответственно и (рис. 12.2).

Рис. 12.2 К составлению материального баланса и выводу уравнения рабочей линии процесса:

а – схема потоков в аппарате; б – изображение рабочей линии в координатах y — x

Предположим, что , тогда распределяемое вещество будет переходить из фазы в фазу , а концентрация в фазе будет уменьшаться от до , соответственно концентрация в фазе увеличится от до .

Для бесконечно малой площади поверхности аппарата

. (12.5)

Интегрируя это уравнение в пределах изменения концентраций распределяемого вещества в аппарате, получим

, (12.6)

откуда определим массовые расходы

;

.

Интегрируя уравнение (12.5) в пределах от начальных до текущих концентраций, получим , откуда определим связь между текущими концентрациями

. (12.7)

Аналогично для противоточного движения фаз

,

где ; .

Из уравнений (12.7) и (12.8) легко видеть, что связь между текущими концентрациями распределяемого вещества подчиняется линейным уравнениям. Уравнение прямой, выражающее зависимость между фактическими (рабочими) концентрациями, называется рабочей линией процесса.

12.4. ОСНОВНЫЕ ЗАКОНЫ МАССОПЕРЕДАЧИ

В процессах массопередачи следует различать несколько случаев массообмена: между потоком газа или пара и потоком жидкости; между потоками жидкости; между потоками жидкости и твердой фазой; между потоками газа или пара и твердой фазой.

Основными законами массопередачи являются закон молекулярной диффузии (первый закон Фика), закон массоотдачи (закон Ньютона — Щукарева) и закон массопроводности.

Закон молекулярной диффузии (первый закон Фика), основанный на том, что диффузия в газах и растворах жидкостей происходит в результате хаотического движения молекул, приводящего к переносу молекул распределяемого вещества из зоны высоких концентраций в зону низких концентраций, гласит: количество вещества, перенесенного путем диффузии, пропорционально градиенту концентраций, площади, перпендикулярной направлению диффузионного потока, и продолжительности процесса:

, (12.9)

где: dM – количество вещества, перенесённого путём диффузии; D – коэффициент пропорциональности, или коэффициент диффузии; — градиент концентрации в направлении диффузии; F – элементарная площадка, через которую происходит диффузия; dτ – продолжительность диффузии.

Коэффициент диффузии показывает, какое количество вещества диффундирует через поверхность в 1 в течение 1 ч при разности концентраций на расстоянии 1 м, равной единице.

Знак «минус» в правой части уравнения показывает, что при молекулярной диффузии концентрация убывает.

Если единицы измерений [М] = [кг], [Р] = [], [τ] = [ч], [С] = [кг/] и []=[м], то размерность коэффициента диффузии определится из уравнения (12.9):

.

Значения коэффициента диффузии обычно берут из справочников или находят по следующим формулам:

; (12.10)

, (12.11)

где: Т – температура, К; — давление, Па; и — мольные объемы взаимодействующих веществ, ; и — молекулярные массы веществ, кг/кмоль; — динамическая вязкость, , А и В — опытные константы, зависящие от природы вещества.

Коэффициенты диффузии зависят от агрегатного состояния систем. Для газов коэффициенты диффузии имеют значения (0,1. 1,0)10-4 . Они примерно на четыре порядка выше, чем для жидкостей. С увеличением температуры коэффициенты диффузии возрастают, а с повышением давления уменьшаются.

Коэффициенты диффузии в газах почти не зависят от концентрации, в то время как коэффициенты диффузии в жидкостях изменяются с изменением концентрации диффундирующего вещества.

Дифференциальное уравнение молекулярной диффузии (второй закон Фика) получают, рассмотрев материальный баланс по распределяемому веществу для элементарного параллелепипеда, выделенного мысленно в потоке одной из фаз (рис. 12.3).

Рис. 12.3. К выводу дифференциального уравнения молекулярной диффузии

Пусть через этот элементарный параллелепипед за счет молекулярной диффузии перемещается вещество. Если через грани , и проходят количества вещества, соответственно равные , , , то через противоположные грани выходят количества вещества , , , т. е. элементарный объем параллелепипеда приобретает диффундирующее вещество в количестве . При этом концентрация вещества повышается на . Согласно основному закону молекулярной диффузии (первый закон Фика)

;

.

.

Аналогично найдем разности между количествами вещества, прошедшего через другие противоположные грани параллелепипеда.

Общее количество приобретенного вещества

. (12.12)

Это же количество вещества можно найти умножением объема параллелепипеда на изменение концентрации диффундирующего вещества за время :

. (12.13)

Приравнивая уравнения (12.12) и (12.13), получим дифференциальное уравнение молекулярной диффузии

. (12.14)

Основной закон массоотдачи, который является аналогом закона Ньютона, был установлен русским ученым Щукаревым при изучении растворения твердых тел. Этот закон формулируется так: количество вещества, перенесенного потоком от поверхности раздела фаз (контакта фаз) в воспринимающую фазу или в обратном направлении, прямо пропорционально разности концентраций у поверхности контакта фаз и в ядре потока воспринимающей фазы, площади поверхности контакта фаз и продолжительности процесса.

Согласно теории диффузионного пограничного слоя распределяемое вещество переносится из ядра потока жидкости к поверхности раздела фаз непосредственно конвективными потоками жидкости и молекулярной диффузией. В рассматриваемой системе (рис. 12.4) различают ядро потока и приграничный диффузионный слой. В ядре перенос вещества осуществляется преимущественно потоками жидкости или газа. В условиях турбулентного течения потоков концентрация распределяемого вещества в данном сечении в условиях стационарного режима сохраняется постоянной. По мере приближения к пограничному диффузионному слою турбулентный перенос снижается и начинает увеличиваться перенос за счет молекулярной диффузии. При этом появляется градиент концентрации распределяемого вещества, растущий по мере приближения к границе. Таким образом, область пограничного диффузионного слоя — это область появления и роста градиента концентрации, область увеличения влияния скорости молекулярной диффузии на общую скорость массопередачи.

Рис.12.4. К выводу уравнения массоотдачи

Примем, что распределяемое вещество М переходит из фазы G, в которой его концентрация выше равновесной, в фазу L.

Если концентрации вещества в ядрах фаз принять равными и , а концентрации на поверхности раздела фаз — соответственно и , , то процесс массоотдачи вещества из ядра фазы G к поверхности раздела фаз и от поверхности раздела фаз в ядро фазы L можно записать так:

; (12.15)

,

где: , — коэффициенты массоотдачи, характеризующие перенос вещества конвективными и диффузионными потоками одновременно; концентрации и предполагаются равными равновесным, т. е. и .

Размерность коэффициента массоотдачи .

Коэффициент массоотдачи показывает, какое количество вещества передается от поверхности контакта фаз площадью в 1 в ядро воспринимающей фазы или в обратном направлении в течение единицы времени при разности движущих сил, равной единице.

По физическому смыслу коэффициенты массоотдачи отличаются от коэффициентов массопередачи, но выражаются в одинаковых единицах.

Для установившегося процесса выражает количество вещества, перенесенного от поверхности контакта фаз в ядро или из ядра потока к ее поверхности в единицу времени.

Для этого случая уравнение (12.15) перепишется так:

.

Если для всей поверхности контакта фаз,

. (12.16)

Если рассмотреть вновь элементарный объем фазы (см. рис. 12.3), перемещающийся в пограничном слое, то можно утверждать, что концентрация распределяемого вещества в нем меняется не только за счет молекулярной диффузии, но также и за счет турбулентного переноса его. В этом случае концентрация распределяемого вещества будет функцией не только координат и времени, как в случае только молекулярной диффузии, но и скорости перемещения.

Соответственно этому изменение концентрации G выразим через субстанциональную производную:

. (12.17)

В этом уравнении сумма членов характеризует конвективное изменение концентрации, а — локальное.

Увеличение количества распределяемого вещества за счет молекулярной диффузии определяется уравнением (12.14). Приравнивая уравнение (12.17) к (12.14) и заменяя локальное изменение концентрации на полное в (12.17), получим дифференциальное уравнение конвективной диффузии

. (12.18)

Для полного математического описания процесса это уравнение должно быть дополнено уравнением, характеризующим условие на границе раздела фаз.

Количество вещества, передаваемого из фазы в фазу у границы, определяется основным законом конвективной диффузии (12.15). У поверхности раздела фаз вещество переходит из фазы в фазу, как было установлено выше, за счет молекулярной диффузии [см. уравнение (12.9)]. Приравнивая эти уравнения, получим

, (12.19)

где: — движущая сила процесса.

Уравнение (12.19) характеризует условие массообмена на границе фазы и дополняет уравнение (12.18), являясь вместе с ним математическим описанием процесса конвективной диффузии.

Критериальные уравнения конвективной диффузии получают из уравнений (12.18) и (12.19).

Для получения диффузионных критериев, подобия воспользуемся методами теории подобия. Из уравнения (12.19) получим безразмерный комплекс , из которого после сокращения получают диффузионный критерий Нуссельта

, (12.20)

который характеризует условия на границе рассматриваемой фазы, т. е. выражает отношение интенсивности переноса вещества в ядре фазы конвективной диффузией к интенсивности переноса в диффузионном слое, где интенсивность переноса определяется молекулярной диффузией D.

Из дифференциального уравнения конвективной диффузии (12.18), разделив все члены на , получим безразмерные комплексы

и

и соответственно диффузионный критерий Фурье

(12.21)

и диффузионный критерий Пекле

. (12.22)

Критерий характеризует изменение скорости потока диффундирующей массы во времени и используется для характеристики нестационарных процессов диффузии. Преобразуем критерий и представим его в виде произведения

.

Диффузионный критерий Прандтля характеризует подобие полей физических величин и определяется только физическими свойствами вещества. Найдя критерии подобия, характеризующие явление массообмена, запишем общее критериальное уравнение конвективной диффузии

. (12.23)

Критерий Нуссельта в этом уравнении является определяемым в отличие от других критериев, которые являются определяющими, т. е. составленными целиком из параметров, входящих в условие однозначности. Коэффициент массоотдачи, входящий в критерий Нуссельта, не входит в условие однозначности и является искомой величиной.

В явном виде уравнение (12.23) перепишется так:

. (12.24)

Критерий Грасгофа в этом уравнении характеризует конвективную диффузию в условиях естественной конвекции.

В случае стационарных процессов из общего критериального уравнения исключается критерий Фурье и оно приобретает вид

. (12.25)

При вынужденном движении можно пренебречь естественной конвекцией. В этом случае из уравнения (12.25) выпадает критерий Грасгофа и уравнение приобретает вид

. (12.26)

Конкретные критериальные уравнения приводятся в соответствующих главах этой части.

По значениям критерия Нуссельта, найденным по критериальным уравнениям, определяют коэффициент массоотдачи

. (12.27)

Между переносом теплоты, массы и механической энергии существует, как отмечалось ранее, аналогия, эти процессы описываются однотипными дифференциальными уравнениями.

При рассмотрении движения потока жидкости в трубе различают пограничный слой и ядро потока. В ядре турбулентного потока происходит выравнивание скоростей по нормали к вектору скорости, в пограничном же слое происходит резкое изменение скорости потока до нуля. Такое же выравнивание температур и концентраций происходит в процессах тепло — и массопередачи. Таким образом, имеет место аналогия между этими процессами.

Исходя из этой аналогии, можно приближенно определять коэффициенты массоотдачи по данным о трении жидкостного потока или о скорости переноса теплоты.

На основании гидродинамической аналогии можно определить отношение коэффициента массоотдачи к средней скорости потока , которое представляет собой безразмерную величину и носит название диффузионного критерия Стантона

.

Критерий Стантона характеризует подобие полей концентраций и скоростей при массоотдаче в турбулентных потоках.

Существует связь между коэффициентом массопередачи и коэффициентами массоотдачи. Рассмотрим процесс массопередачи при переходе распределяемого вещества из фазы G в фазу L при условии линейных зависимостей между рабочими и равновесными концентрациями (см. рис. 12.4). Примем, что на границе раздела фаз достигается равновесие.

Количество вещества, перемещающегося из фазы G к поверхности на границе раздела фаз, может быть определено по уравнению

,

где: — коэффициент массоотдачи для фазы, G.

Количество распределяемого вещества, перемещающегося от элемента поверхности в фазу L, может быть вычислено также по фазе L по уравнению (12.15). В этом случае движущую силу следует выразить разностью :

,

где: — коэффициент массоотдачи для фазы L.

Так как известна равновесная зависимость , концентрацию в фазе L можно выразить через равновесную в фазе G:

.

.

Сложим левые и правые части этих уравнений

,

так как .

Из основного уравнения массопередачи (12.4) получим

.

Приравнивая правые части уравнения, получим

или . (12.28)

Рассуждая аналогично, для фазы L будем иметь

или . (12.29)

Левые части этих уравнений представляют собой общее диффузионное сопротивление переносу, а их правые части — сумму диффузионных сопротивлений массоотдаче в фазах. Зависимости (12.28) и (12.29) являются поэтому уравнениями аддитивности фазовых сопротивлений.

Коэффициенты и связаны соотношением . Числовые значения коэффициентов массопередачи определяются значениями коэффициентов массоотдачи и углом наклона равновесной линии. Коэффициенты массоотдачи определяют по критериальным уравнениям.

12.5. МАССОПЕРЕДАЧА С ТВЕРДОЙ ФАЗОЙ

К этим процессам относятся экстракция из твердых пористых материалов (выщелачивание), сушка и адсорбция.

Массоперенос в твердом пористом материале представляет собой неустановившийся процесс.

Перенос вещества из твердого капиллярно-пористого тела через границу раздела фаз в газовую (паровую) среду (сушка), в жидкую (экстракция) или из газовой (паровой) среды в твердое тело (адсорбция) происходит при наличии градиента потенциала переноса в направлении достижения равновесия.

На перенос вещества значительное влияние оказывает его структура. Твердое пористое тело представляет собой систему со сложными многообразными геометрическими характеристиками, главными из которых являются пористость, полидисперсность, распределение пор по размерам, форма капилляров.

В зависимости от капиллярно-пористой структуры твердые материалы классифицированы в порядке уменьшения величины критического диаметра пор, которому соответствуют усложнение внутренней структуры твердого тела и увеличение внутридиффузионного сопротивления, на широкопористые ( до 100 нм), среднепористые и материалы с ультрамикропорами.

В общем случае перенос вещества внутри пористого твердого тела осуществляется как в паровой, так и в жидкой фазе. В случае десорбции влаги при небольшой влажности материала влага перемещается в основном за счет молекулярного переноса пара. При большой влажности материала перемещение жидкости и пара обусловлено явлениями с различными механизмами переноса: капиллярными, осмотическими, термокапиллярными, гравитационными потоками газовой (паровой) фазы.

Значение каждого из перечисленных механизмов переноса зависит от капиллярно-пористой структуры твердого тела и режима проведения процесса.

Массоперенос в системе с твердой фазой рассмотрим на примере десорбции влаги из твердого тела на следующей схеме (рис. 12.5).

Рис.12.5. Модель массопереноса вещества в капиллярно-пористом теле

В начальный момент времени концентрация распределяемого вещества постоянная во всем объеме пластины и равна . Концентрация распределяемого вещества в омывающей твердое тело фазе постоянна и равняется . При начальной концентрации вещества в твердом теле , большей равновесной концентрации, соответствующей концентрации в омывающей фазе, распределяемое вещество перемещается в омывающую фазу с поверхности раздела фаз.

При удалении свободной поверхностной влаги температура материала не меняется и равна температуре мокрого термометра, а давление паров над материалом равно давлению насыщенных паров жидкости. В этот период влага удаляется из твердого материала при постоянной скорости.

С течением времени концентрация вещества в твердом теле непрерывно снижается, принимая значения , . Начиная с некоторой критической концентрации , наблюдается продвижение зоны испарения в глубь тела, что приводит к уменьшению градиента потенциала переноса и к замедлению процесса.

Удаление влаги происходит не только в продвигающейся внутрь тела поверхности испарения с переменной координатой , но и во всей толщине «отработанного слоя», постепенно уменьшаясь по мере приближения к поверхности тела. Это явление объясняется различными формами связи влаги с материалом.

В период уменьшения скорости общая скорость массопереноса будет определяться скоростью перемещения общего массового потока вещества от поверхности испарения к поверхности тела, т. е. скоростью массопроводности, которая определяется механизмом массопереноса.

Процесс массопроводности описывается уравнением, аналогичным закону Фика (Фурье),

, (12.30)

в котором называется коэффициентом массопроводности. Здесь Х — концентрация распределяемого вещества в твердом теле; t — температура тела.

В процессах адсорбции коэффициент массопроводности значительно зависит от степени насыщения адсорбента адсорбтивом и температуры.

В процессах экстрагирования тепловые эффекты незначительны, что позволяет рассматривать процесс массопереноса как изотермический. Это обстоятельство облегчает анализ и расчет кинетики процесса.

Наиболее сложным процессом массопереноса с твердой фазой является сушка, представляющая собой взаимосвязанный тепломассообменный процесс.

Дифференциальное уравнение массопроводности, которое выводится аналогично дифференциальному уравнению теплопроводности, имеет вид

. (12.31)

Условия на границе сформулируем так: к элементарной площадке на границе раздела фаз подводится из твердой фазы вещество в количестве , которое определяется уравнением (12.30). Это вещество отводится в омывающую фазу за cчет конвективной диффузии, т. е. . Приравнивая к этому выражению уравнение (3.1.30) и проводя преобразования, получим

/

Методом теории подобия получим безразмерный комплекс

, (12.32)

который называется диффузионным критерием Био.

Из уравнения массопроводности получим диффузионный критерий Фурье

Критерий Био показывает соотношение между скоростью перемещения вещества от поверхности фаз в омывающую фазу, которая характеризуется коэффициентом массоотдачи , и скоростью массопроводности.

Критерий Фурье характеризует изменение скорости массопереноса внутри твердого тела во времени.

При подобии процессов массопроводности должно соблюдаться геометрическое подобие, которое для одномерного потока выражается как , где — координата; R — определяющий размер твердого тела. Определяемой величиной является безразмерная концентрация: , где Х — концентрация в данной точке твердой фазы в момент времени .

Для одномерного потока критериальное уравнение массопроводности запишется так:

. (12.34)

Аналитическое решение уравнения (12.34) имеется только для твердых тел простейшей формы: неограниченной пластины, бесконечного цилиндра и шара. Для облегчения расчетов составлены для этих тел графики, позволяющие определить по критериям и безразмерные концентрации.

В зависимости от структуры капиллярно-пористого тела, режима процесса, концентрации вещества в твердой фазе стадией, определяющей скорость процесса, может быть внешний либо внутренний массоперенос либо скорость общего процесса будет определяться обеими стадиями процесса одновременно. Для характеристики влияния внутреннего и внешнего массопереноса на кинетику процесса служит значение критерия Био, которое представляет отношение внешнедиффузионного сопротивления массопереносу к внутридиффузионному.

Для описания массопередачи в системе с твердой фазой в первом приближении может быть использовано основное уравнение массопередачи (12.4).

Коэффициент массопередачи рассчитывают, например, по уравнению

, (12.35)

в котором — коэффициент формы, равный для пластины 1, для цилиндра 2, для шара 3; — показатель степени в уравнении распределения концентраций в твердом теле.

При проведении процесса во внешнедиффузионной области, когда , уравнение (12.35) преобразуется так:

. (12.36)

В этом случае скорость процесса целиком определяется внешнедиффузионными факторами.

При одновременном течении процессов тепло — и массообмена для определения коэффициентов тепломассоотдачи предложены критериальные уравнения вида

, (12.37)

где: — критерий Гухмана, характеризующий объемное испарение жидкости в адиабатических условиях. Значения А и зависят от гидродинамического режима в аппарате.

При лимитирующей стадией является массопроводность внутри материала и из (12.35) следует

, (12.38)

где: .

Сложность связи коэффициента массопроводности с влажностью материала и температурой процесса обусловливает экспериментальное определение коэффициента массопроводности для каждого материала. Для ряда капиллярно-пористых материалов накоплено большое количество экспериментальных данных по коэффициентам массопроводности.

12.6. ДВИЖУЩАЯ СИЛА МАССООБМЕННЫХ ПРОЦЕССОВ

Движущая сила массообменных процессов, как было сказано, определяется степенью отклонения от равновесия, которое вычисляется как разность между рабочей и равновесной концентрациями или, наоборот, равновесной и рабочей в зависимости от того, какие значения из них больше. Движущую силу можно выразить через концентрации распределяемого вещества в фазе G через у или в фазе L через Х.

Различают локальные движущие силы, вычисленные для массообменного процесса, протекающего на бесконечно малой площади контакта фаз, и движущие силы для всего процесса массообмена в пределах изменения концентраций от начальных до конечных.

Локальные движущие силы изменяются с изменением концентраций, поэтому для всего процесса массообмена вычисляют средние движущие силы.

Выражение и значение средней движущей силы зависят от вида уравнения равновесия.

Рассмотрим определение средней движущей силы, когда линия равновесия определяется уравнением кривой (рис. 12.6) в противоточном массообменном аппарате при условии .

Рис. 12.6. Изображение рабочей и равновесной линий в координатах y-x

Примем, что расходы фаз G и L постоянны, коэффициенты массопередачи и не меняются по длине аппарата, и перенос вещества происходит из фазы G в фазу L.

Для элемента поверхности на основании уравнения материального баланса (12.5) можно записать .

Разделяя переменные и F и интегрируя это выражение в пределах изменения концентрации от до (см. рис. 12.1) и поверхности контакта фаз от 0 до F, получим

, (12.39)

. (12.40)

Согласно уравнению материального баланса (12.6) количество вещества, перешедшего из фазы G в фазу L, равно . Подставим G из последнего выражения в уравнение (12.40)

,

; (12.41)

. (12.42)

Аналогично можно определить среднюю движущую силу в концентрациях в фазе L

. (12.43)

Интеграл в знаменателе уравнений (12.42) и (12.43) называется числом единиц переноса :

; (12.44)

. (12.45)

Из уравнений (12.41), (12.42), (12.44) и (12.45) находят соотношения между средней движущей силой и числом единиц переноса:

. (12.46)

Сопоставляя уравнение (12.41) с основным уравнением массопередачи (12.2), найдем выражения средних движущих сил массопередачи

. (12.47)

Из уравнений (12.46) и (12.47) следует, что число единиц переноса обратно пропорционально средней движущей силе процесса.

Из уравнений (12.46) и (12.47) также следует, что число единиц переноса характеризует изменение рабочих концентраций на единицу движущей силы.

В уравнениях (12.42) и (12.43) знаменатель дробей находят графическим интегрированием. Так, например, в пределах концентраций , через определенные интервалы для ряда значений у находят соответствующие им величины х, , и .

На диаграмме в координатах строят кривую, как показано на рис. 12.7. Площадь под кривой, ограниченная ординатами и умноженная на масштаб диаграммы и , дает искомый интеграл

. (12.48)

Рис. 12.7. К определению числа единиц переноса графическим интегрированием

Ниже будет показано, что число единиц переноса используют для расчета высоты массообменных аппаратов, особенно когда поверхность контакта фаз трудно определить.

В частных случаях, например при массопередаче в разбавленных растворах (адсорбция, экстракция), а также при расчете массообменных аппаратов, когда для упрощения расчетов аппроксимируют линию равновесия прямой, средняя движущая сила массопередачи определяется, как и при расчете теплообменных аппаратов, как средняя логарифмическая или средняя арифметическая величина из движущих сил на входе и выходе из аппарата.

Рассмотрим расчет средних движущих сил при различных схемах взаимодействия потоков.

На рис. 12.8,а приведена общая схема изменения концентраций при противоточном взаимодействии потоков.

Рис. 12.8. Схемы массообмена и условия отсчета движущих сил:

а – при противотоке; б – при прямотоке

В этом случае средние движущие силы в — м элементе аппарата определяются так:

; (12.49)

. (12.50)

В случае прямотока (рис. 12.8, б)

; (12.51)

. (12.52)

При расчете движущей силы при перекрестном токе взаимодействующих фаз принимают в большинстве случаев одну из схем изменения концентраций фаз в аппарате, а именно: обе фазы на элементе аппарата идеально перемешаны; газ (пар) идеально перемешан, а в фазе, протекающей через элемент аппарата, концентрация меняется линейно; фаза, перетекающая через элемент аппарата, идеально перемешана, а в газе (паре), пронизывающем перетекающий поток, концентрация меняется линейно.

Схема массообмена на элементе аппарата и условия отсчета движущих ил приведены на рис. 12.9.

На — й элемент поступает фаза концентрацией . В результате массообмена с поступающим с нижележащего элемента газом (паром) с концентрацией концентрация в жидкой фазе изменяется до конечной, равной , а концентрация в паре изменяется до .

В случае, когда обе фазы на элементе аппарата идеально перемешаны, средняя движущая сила определяется так:

; (12.53)

.

Условия отсчета движущей силы для случая, когда жидкая фаза идеально перемешана на элементе и имеет концентрацию, равную концентрации на выходе, а газ (пар) линейно меняет концентрацию от до , представлены на рис. 12.9.

Рис. 12.9. Схема массообмена и условия отсчета движущих сил при перекрестном токе:

а – жидкая фаза идеально перемешана, а пар (газ) идеально вытесняется в слое; б – обе фазы идеально перемешаны

Следует отметить, что эта схема изменения концентраций в фазах соответствует процессу в аппаратах перекрестного тока небольших диаметров.

На таком представлении о характере взаимодействия фаз основан ряд методов расчета размеров аппаратов. В этом случае движущие силы определяются так:

; . (12.54)

Для случая идеального вытеснения потоков средние движущие силы в аппарате (рис. 12.9,б) будут определяться как средние логарифмические из движущих сил на входе потока и на выходе из аппарата. Граничные локальные движущие силы в аппарате при линейном изменении концентраций в паре (газе) определяются уравнениями. Среднюю движущую силу с учетом выражений (12.54) можно получить в виде

; (12.55)

Расчет движущей силы из принятых условных схем взаимодействия потоков приводит, как правило, к погрешностям в определении площади рабочей поверхности аппарата.

Все реальные аппараты, как было отмечено выше, в большинстве случаев относятся по гидродинамической характеристике к аппаратам промежуточного типа, в которых движущая сила зависит от распределения концентраций и температур в рабочей зоне аппарата.

Общим для рассмотренных выше схем изменения концентраций в фазах является то, что ни одна из них не учитывает реальной гидродинамической обстановки в аппарате.

Действительную движущую силу можно определить на основании гидродинамических моделей и экспериментальных данных по перемешиванию фаз на контактном устройстве.

Коэффициент использования движущей силы в прямо — и противоточных аппаратах

, (12.56)

где:, — движущие силы на входе и выходе из -го контактного устройства.

Для аппаратов перекрестного тока соответственно получено выражение

. (12.57)

Из уравнения (12.57) по фазе L, например, при получим

. (12.58)

Из последнего уравнения можно получить выражение, удобное для расчетов,

. (12.59)

где: и А — тангенсы углов наклона равновесной и рабочей линий; — число единиц переноса по фазе G, вычисленное при условии идеального перемешивания газовой (паровой) фазы; N — количество псевдосекций.

В некоторых массообменных аппаратах, например в насадочных, тарельчатых, площадь поверхности фазового контакта трудно определить. В этих случаях для их расчета используют модифицированные уравнения массопередачи.

Площадь поверхности фазового контакта в таких аппаратах

,

где: — объем аппарата, ; — удельная поверхность фазового контакта, .

Подставляя величину F в уравнение массопередачи (12.4), получим

. (12.60)

Величины и называют объемными коэффициентами массопередачи, соответственно и — объемными коэффициентами массоотдачи.

Из уравнения (12.60) получают

, или ,

где: и — объемные коэффициенты массопередачи.

Представив , можно из (12.41) определить высоту массообменного аппарата, имея в виду, что :

, (12.61)

где: — площадь поперечного сечения аппарата, .

Величина представляет собой высоту аппарата, эквивалентную единице переноса (ВЕП), и измеряется в единицах высоты. В случае выражения числа единиц переноса в концентрациях х эта величина равна . С учетом этого модифицированные уравнения массопередачи принимают вид

;

. (12.62)

Сопоставление полученных уравнений (12.62) с основным уравнением массопередачи показывает, что высота, эквивалентная единице переноса или , обратно пропорциональна объемному коэффициенту массопередачи.

Таким образом, чем выше коэффициент массопередачи, тем ниже величина ВЕП.

12.7. РАСЧЕТ ОСНОВНЫХ РАЗМЕРОВ МАССООБМЕННЫХ АППАРАТОВ

Для расчета высоты противоточных колонных аппаратов (тарельчатые и насадочные абсорбционные и ректификационные, экстракционные аппараты) требуется определить число ступеней изменения концентраций (тарелок) по высоте аппарата.

Число теоретических ступеней может быть определено аналитическим или графическим методом. Часто пользуются таким понятием, как теоретическая ступень изменения концентраций, или теоретическая тарелка. При этом предполагается, что на этой гипотетической ступени контакта фаз жидкость идеально перемешана, а концентрации взаимодействующих фаз достигают равновесных значений.

Рассмотрим процесс массообмена на -й тарелке (рис. 12.10,а). На тарелку поступают газовая фаза G концентрацией и жидкая фаза L концентрацией . В результате массообмена концентрация в газовой фазе снижается до величины , а в жидкой увеличивается до .

В случае достижения равновесия между составом удаляющегося с тарелки газа , и составом стекающей с нее жидкости , их концентрации изображаются на рис. 12.10, б точкой В, лежащей на линии равновесия.

Изменению концентраций в газовой фазе на теоретической ступени соответствует вертикальный отрезок . Изменение же концентрации в жидкой фазе от до изобразится горизонтальным отрезом .

Рис.12.10. Схема массообмена на тарелке (а) и изображение процесса в координатах y-x (б) – в условиях достижения равновесия на тарелке – идеальный процесс; в – в условиях недостижения равновесия на тарелке – реальный процесс

Таким образом, «ступенька» изображает изменение концентрации в обеих фазах на теоретической тарелке. Для определения числа теоретических тарелок в колонном аппарате строят последовательно такие «ступеньки», начиная от точки, характеризующей начальные концентрации в газовой и жидкой фазах, до точки, отвечающей конечным концентрациям в газовой и жидкой фазах.

Для определения числа действительных тарелок используют коэффициент полезного действия аппарата, который учитывает реальную кинетику массообмена на действительной тарелке. Значения КПД для различных конструкций тарелок находятся опытным путем и колеблются от 0,3.до 0,8.

Число действительных тарелок с учетом КПД определяется соотношением

, (12.63)

где: — число теоретических тарелок; — КПД.

Коэффициент полезного действия тарелки зависит от конструкции тарелки, физико-химических свойств жидкости и газа, взаимодействующих на тарелке, а также от гидродинамики потоков.

Следует иметь в виду, что расчет высоты аппарата с помощью теоретических тарелок (ступеней) является приближенным и его возможно применять, когда отсутствуют данные о коэффициентах массопередачи или имеются надежные данные о КПД для данных систем промышленных аппаратов.

В действительности равновесие при проведении массообменных процессов не достигается. Поэтому задача заключается в определении действительных ступеней контакта.

Эффективность ступени изменения концентраций выражается отношением изменения концентрации распределяемого вещества в одной фазе на ступени к движущей силе на входе фазы в ступень. Изменение концентраций на -й тарелке выразится как разность (отрезок на рис. 12.10,в), а движущая сила при идеальном перемешивании жидкости на тарелке — (отрезок на рис. 12.10,в).

Тогда эффективность ступеней (КПД по Мерфри)

.

Эффективность ступени представляет собой отношение действительного изменения концентраций на ступенях контакта фаз к максимально возможному.

. (12.64)

Рассмотрим определение числа действительных ступеней изменения концентраций с помощью построения кинетической линии.

Движущая сила для -й тарелки определится в соответствии с уравнением (12.54) при :

. (12.65)

Соответственно число единиц переноса

, (12.66)

. (12.67)

Из рис. 12.10 видно, что , или . Зная величину , можно найти по отрезку ВС положение точки В, а также В1, В2 и т. д. Соединив точки В, В1, В2, . линией, получим кинетическую линию процесса, которая характеризует концентрации фазы на выходе с каждой тарелки.

Для определения числа действительных ступеней изменения концентраций впишем в пределах заданных концентраций (точки М и N на рис. 12.11) ступенчатую линию. Число ступеней и определит число действительных ступеней изменения концентраций.

Рис. 12.11. К определению числа ступеней изменения концентраций методом построения кинетической линии

Рабочая высота аппарата

, (12.68)

где: — расстояние между тарелками, м.

Для построения кинетической линии необходимо знать число единиц переноса, или эффективность ступени. Число единиц переноса определяется из основного уравнения массопередачи, записанного для одной тарелки в виде .

Площадь поверхности контакта фаз в случае барботажа определить труднее. Поэтому коэффициент массопередачи относят к площади барботажа тарелки и обозначают , а число единиц переноса — как .

Коэффициент массопередачи рассчитывают с учетом известных коэффициентов массоотдачи и по уравнению аддитивности (12.28)

Таким образом, положение кинетической линии можно найти, определив и вычислив значение и величины отрезков СВ.

, (12.69)

где: G — расход газа, кг/ч; — плотность газа, ; v — линейная скорость газа (пара) в свободном сечении колонны, м/с.

Между эффективностью ступеней и числом единиц переноса существует следующая связь:

,

. (12.70)

1. Какие признаки объединяют все массообменные процессы? 2. В каком направлении протекают массообменные процессы? Как выражается движущая сила процесса? 3. Каков физический смысл коэффициентов массопередачи и массоотдачи? Какая существует между ними связь? 4. Что характеризует рабочая и равновесная линии процесса? 5. Как изобразить процесс массопередачи графически? 6. Какими законами описывается перенос вещества из ядра потока и поверхности раздела фаз? 7. Какой закон описывает молекулярную диффузию? 8. Как можно определить, когда процесс протекает во внутридиффузионной области, а когда — во внешнедиффузионной? 9. Почему в расчетной практике пользуются не дифференциальными уравнениями массопереноса, а критериальными? 10. Почему при расчете массообменных аппаратов оперируют со средней движущей силой процесса? 11. В каких случаях среднюю движущую силу определяют через число единиц переноса? 12. В каких случаях возможно определять среднюю движущую силу как среднелогарифмическую? 13. Какие принимаются схемы изменения концентрации распределяемого вещества во взаимодействующих фазах в массообменных аппаратах при выводе уравнений средних движущих сил? 14. Оцените, какая движущая сила будет больше в случае, когда обе фазы идеально перемешаны или когда, например, пар идеально вытесняется в слое идеально перемешанной жидкости. 15. Почему изложенные в лекции схемы изменения концентраций распределяемого вещества в фазах только приблизительно учитывают реальную гидродинамическую обстановку в аппарате?


источники:

http://allrefs.net/c1/49m6k/p4/

http://pandia.ru/text/78/226/18292.php