Уравнение математической физики типы дифференциальных уравнений

Основные типы уравнений математической физики

Основные типы уравнений

К основным уравнениям математической физики относятся следующие дифференциальные уравнения в частных производных второго порядка.

1. Волновое уравнение:

.

Это уравнение является простейшим уравнением гиперболического типа. К его исследованию приводит изучение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводах и т. д.

2. Уравнение теплопроводности, или уравнение Фурье:

.

Это уравнение является простейшим уравнением параболического типа. К его исследованию приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, изучение некоторых вопросов теории вероятностей и т. д.

3. Уравнение Лапласа:

.

Это уравнение относится к простейшим уравнениям эллиптического типа. К его исследованию приводит изучение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики и т. д.

В выписанных уравнениях искомая функция u зависит от двух переменных t, x или x, y. Рассматриваются также уравнения и для функций с большим числом переменных. Например, волновое уравнение с тремя независимыми переменными имеет вид

,

и уравнение Лапласа

.

Уравнение колебаний струны.

Формулировка краевой задачи

В математической физике струной называют гибкую упругую нить. Пусть струна в начальный момент времени расположена на отрезке 0≤xl оси Ox. Предположим, что ее концы закреплены в точках x=0 и x=l. Если струну отклонить от первоначального положения, а потом предоставить самой себе или придать ее точкам некоторую скорость, то точки струны будут совершать движение. Задача заключается в определении формы струны в любой момент времени и в определении закона движения каждой точки струны в зависимости от времени.

Если предположить, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости, то процесс колебания струны описывается одной функцией u(x,t), которая определяет величину перемещения точки струны с абсциссой x в момент t.

Доказано, что при отсутствии внешней силы функция u(x,t) должна удовлетворять дифференциальному уравнению в частных производных второго порядка

.

Для полного определения движения струны одного уравнения недостаточно. Искомая функция u(x,t) должна удовлетворять граничным условиям, указывающим, что делается на концах струны (при x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, концы струны при x=0 и x=l неподвижны. Тогда при любом t должны выполняться равенства

Это – граничные условия для рассматриваемой задачи. В начальный момент t=0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f(x), т. е.

Далее в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией φ(x), т. е.

.

Эти два условия называются начальными условиями.

Колебания бесконечной струны.

Формула Даламбера решения задачи Коши

для волнового уравнения

Прежде чем решать задачу о колебаниях закрепленной струны, рассмотрим более простую задачу – о колебаниях бесконечной струны. Если представить очень длинную струну, то ясно, что на колебания, возникающие в ее средней части, концы струны не будут оказывать заметного влияния.

Рассматривая свободные колебания, мы должны решить однородное уравнение

при начальных условиях

, ,

где функции f(x) и g(x) заданы на всей числовой оси. Такая задача называется задачей с начальными условиями или задачей Коши.

Преобразуем волновое уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик

распадается на два уравнения:

интегралами которых служат прямые

Введем новые переменные ξ=xat, η=x + at и запишем волновое уравнение для переменных ξ и η.

, ,

,

,

и подставляя их в исходное уравнение, видим, что уравнение колебания струны в новых координатах будет

.

Интегрируя полученное равенство по η при фиксированном ξ, придем к равенству . Интегрируя это равенство по ξ при фиксированном η, получим

,

где φ и ψ являются функциями только переменных ξ и η соответственно. Следовательно, общим решением исходного уравнения является функция

. (8)

Найдем функции φ и ψ так, чтобы удовлетворялись начальные условия:

.

,

.

Интегрируя последнее равенство, получим:

,

где х0 и С – постоянные. Из системы уравнений

Таким образом, мы определили функции φ и ψ через заданные функции f и g, причем полученные равенства должны иметь место для любого значения аргумента. Подставляя в (8) найденные значения φ и ψ, будем иметь

.

Найденное решение называется формулой Даламбера решения задачи Коши для волнового уравнения

Пример. Решить уравнение при начальных условиях , .

Используя формулу Даламбера, сразу получаем

.

Решение волнового уравнения

методом разделения переменных

Метод разделения переменных применяется для решения многих задач математической физики. Пусть требуется найти решение волнового уравнения

, (9)

удовлетворяющее краевым условиям

u(x,0)=f(x), . (12),(13)

Частное решение уравнения (9), удовлетворяющее граничным условиям (10) и (11), ищут в виде произведения двух функций:

Подставляя функцию u(x,t) в уравнение (9) и преобразовывая его, получим

.

В левой части этого уравнения стоит функция, которая не зависит от x, а в правой – функция, не зависящая от t. Равенство возможно только в том случае, когда левая и правая части не зависят ни от x, ни от t, т. е. равны постоянному числу. Обозначим

, где λ>0. (14)

Из этих уравнений получаем два однородных дифференциальных уравнения второго порядка с постоянными коэффициентами

и . (15)

Общее решение этих уравнений

,

,

где A, B, C, D – произвольные постоянные.

Постоянные A и B подбирают так, чтобы выполнялись условия (10) и (11), из которых следует, что X(0)=X(l)=0, так как T(t)≠0 (в противном случае u(x,t)=0). Учитывая полученные равенства, находим

А=0 и .

Так как B≠0 (иначе, было бы X=0 и u=0, что противоречит условию), то должно выполняться равенство

,

.

Найденные значения λ называют собственными значениями для данной краевой задачи. Соответствующие им функции X(x) называются собственными функциями.

Заметим, что, если в равенстве (14) вместо – λ взять число λ (λ>0), то первое из уравнений (15) будет иметь решение в виде

.

Отличное от нуля решение в такой форме не может удовлетворять граничным условиям (10) и (11).

Зная , можем записать

.

Для каждого n получаем решение уравнения (9)

.

Так как исходное уравнение (9) линейное и однородное, то сумма решений также является решением, и потому функция

(16)

будет решением дифференциального уравнения (9), удовлетворяющим граничным условиям (10) и (11).

Найденное частное решение должно еще удовлетворять начальным условиям (12) и (13). Из условия (12) получим

.

Далее, дифференцируя члены ряда (16) по переменной t, из условия (13) будем иметь

.

Правые части двух последних равенств есть ряды Фурье для функций f(x) и φ(x), разложенных по синусам на интервале (0, l). Поэтому

. (17)

Итак, ряд (16), для которого коэффициенты Cn и Dn определяются по выписанным формулам, если он допускает двукратное почленное дифференцирование, представляет решение уравнения (9), удовлетворяющее граничным и начальным условиям.

Пример. Найти решение краевой задачи для волнового уравнения

, 0

Please wait.

We are checking your browser. gufo.me

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6de642ae7a04758f • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Классификация уравнений математической физики (линейных дифференциальных уравнений с частными производными второго порядка)

Многие задачи механики, физики, технологии приводят к исследованию дифференциальных уравнений с частными производными второго порядка, называемых уравнениями математической физики.

Дифференциальные уравнения математической физики,которые мы будем изучать, – это линейные уравнения второго порядка. Как указано ранее уравнение называют линейным, если оно первой степени относительно искомой функции и всех ее производных и не содержит их произведений, то есть если это уравнение может быть записано в виде уравнения (18.1)

Общепринята следующая классификация уравнения (18.1). Принадлежность уравнения к тому или иному типу определяется коэффициентами при старших производных.

Обозначим – дискриминант уравнения. В зависимости от знака функции Δ уравнение (18.1) относится в данной области к одному из следующих типов:

Δ 0 – эллиптический тип;

Δ не сохраняет постоянного знака – смешанный тип.

Замечание. В уравнении (18.1) независимыми переменными являются координаты x и y. Во многих задачах одной из двух независимых переменных является время и уравнение (18.1) можно записать через x и t (см. табл. 1).

B = C = 0; Δ = 0 – это уравнение параболического типа.

В уравнении Лапласа

A = 1, B = 0, C = 1, Δ = ACB 2 > 0 – это уравнение эллиптического типа.

уравнение смешанного типа в любой области P, содержащей точки оси 0X. При y 0 – эллиптического типа, при y = 0 – линии параболичности.

Докажите самостоятельно, что уравнение

– гиперболического типа.

Краевые условия

Дифференциальные уравнения с частными производными имеют в общем случае бесчисленное множество решений. Поэтому, если физический процесс описывается с помощью уравнения с частными производными, то для однозначной характеристики этого процесса необходимы какие то дополнительные условия. Эти дополнительные данные состоят из краевых, то есть граничных и начальных условий.

Граничные условия заключаются в том, что указываются значения неизвестной функции u на концах промежутка изменения координаты (в задаче о линейной теплопроводности это концы стержня, в задачах о колебаниях струны – это концы струны и т.д.).

Условия, относящиеся к начальному моменту времени, называются начальными.

В каком же случае задаются какие краевые условия? Для того, чтобы лучше понять это, следует рассмотреть понятие стационарного и нестационарного процессов.

Нестационарными называются задачи, решение которых зависит не только от пространственных координат (x, y, z), но и от времени t. Эти задачи связаны с процессами, протекающими во времени. Например, это процессы распространения тепла, процессы диффузии, колебательные (волновые) процессы, процессы распространения электрических волн и ряд других.

Основными дифференциальными уравнениями математической физики, описывающими нестационарные процессы, являются уравнение теплопроводности

(18.2)

и волновое уравнение

(18.3)

Уравнение (18.2) является уравнением параболического типа, а уравнение (18.3) – гиперболического. Постановка задач для уравнений этих типов характеризуется наличием как граничных, так и начальных условий.

Начальные условия состоят в задании в момент времени t = 0 значений искомой функции u и ее производной (в гиперболическом случае) или только значений самой функции (в параболическом случае).

Таким образом, для уравнения теплопроводности ставится одно начальное условие (то есть условие при t = 0)

а для волнового уравнения – два:

(0, x, y, z) = ψ(x, y, z). (18.6)

В случае, если процесс протекает в неограниченной области (область называется неограниченной, если хотя бы одна из координат ее точек может быть сколь угодно большой, например бесконечный стержень, бесконечная струна и т.д.), то задаются лишь начальные условия (задача Коши).

В случае, если задача ставится для конечного интервала, то должны быть заданы и начальные и граничные условия. Тогда говорят о смешанной задаче.

Для описания стационарных процессов обычно используют уравнения эллиптического типа. Время t в эти уравнения не входит. Такими оказываются уравнения стационарного температурного поля, электростатического поля и т.д. Для задач такого типа ставятся только граничные условия, то есть указывается поведение неизвестной функции на контуре области (см.таблицу 1).

В рассматриваемых нами задачах математической физики именно физические соображения подсказывают, какие дополнительные условия следует поставить в той или иной задаче, чтобы получить единственное ее решение, отвечающее характеру изучаемого процесса.

Важнейшие линейные дифференциальные уравнения математической физики

ТипФизический смыслОдномерное уравнениеМногомерное уравнениеДополнительные (краевые) условия
ГиперболическийВолны (струны, мембраны, течение жидкости) затухающие волны Граничные условия; начальные условия для u и
Параболи- ческийУравнения теплопроводности, диффузии Граничные условия; начальное условие для u
ЭллиптическийСтатический случай Только граничные условия

– оператор Лапласа.


источники:

http://gufo.me/dict/bse/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B9_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8

http://lektsii.org/14-37208.html