Уравнение материального баланса реактора идеального вытеснения

Реактор идеального вытеснения

Реактор идеального вытеснения характеризуется тем, что любой элемент объема реагирующей среды движется по высоте (длине) реактора параллельно другим элементам, не смешиваясь с предыдущими и последующими элементами объема.

На рис. 2 схематично показана изменение степени превращения хА, исходных концентраций СА и других параметров в реакторе идеального вытеснения. Материальный баланс такого реактора при Gнач = 0 запишется в виде:

Gпр= Gух+ Gхр (7) (8) (9) (10) Рис.2. Схема реактора идеального вытеснения.

После подстановки значений составляющих материального баланса в уравнение (7) и преобразований получим:

(11).

Приведенное уравнение с начальным условием V=0, СА= СА0 для некоторых видов простых химических реакций имеет аналитическое решение. В таблице 2 приведены решения уравнения (11) как расчетные формулы для реактора, работающего в режиме идеального вытеснения при проведении в нем необратимых химических реакций, когда реакционный объем остается постоянным.

Таблица 2. Расчетные уравнения для реактора идеального вытеснения

Схема реакцииКинетическая модельРасчетные уравнения
при

Пример 5.

Определить объем реактора идеального вытеснения для реакции протекающего без изменения объема реакционной массы.

порядок реакции n=1;

объемный расход исходного вещества GV = 30 л/мин;

начальная концентрация исходного вещества СА0= 0,2 моль/л;

константа скорости реакции k= 0.25 мин -1 ;

степень превращения xA = 0,82.

По базовому уравнению РИВ определяем время реакции:

Рассчитываем объем РИВ:

; .

Пример 6.

Определить производительность реактора по продукту R рассчитать объем реактора идеального вытеснения для полученной производительности, если данная реакция проводиться в РИС-Н.

порядок реакции n=2;

объемный расход исходного вещества GV = 3,6 м 3 /ч;

начальная концентрация исходного вещества СА,0= 0,5 кмоль/м 3 ;

константа скорости реакции k= 2,3 л/(моль∙мин);

Определим время пребывания в реакторе смешения:

Из базового уравнения для реактора смешения находим

, где , находим значение

Рассчитываем степень превращения вещества А:

Находим производительность по продукту R:

Рассчитываем время пребывания в реакторе идеального вытеснения(см. таб.2):

Определяем объем реактора вытеснения по формуле:

Пример 7.

Определить мольную нагрузку на реактор по веществу А и степень превращения в реакторе вытеснения.

Дано:

порядок реакции n=2;

объемный расход исходного вещества GV = 6 м3/ч;

концентрация продукта R на выходе из реактора равна 2.5 кмоль/м3;

константа скорости реакции k1= 0,3 мин -1 , k2= 0,2мин -1 ;

Определяем мольную нагрузку на реактор

Неизвестную начальную концентрацию вещества А на входе в реактор определяем из уравнения:

.

Находим время пребывания:

Рассчитываем начальную концентрацию вещества А:

Находим мольную нагрузку на реактор:

Определяем концентрацию вещества А на выходе из реактора исходя из базового уравнения для реактора вытеснения:

Интегрируя это уравнение и решая относительно СА, получаем:

Рассчитываем степень превращения вещества А:

Задачи для самостоятельного решения

1. Жидкофазная реакция типа А→ R→S имеет константы скоростей, равные к1=2 с -1 и к2= 0,8с -1 . 4.5 ч -1 .Объемный расход исходного вещества А с концентрацией 1,8 моль/л составляет 18 м 3 /ч. Рассчитать объем реактора вытеснения для получения максимального количества вещества R, селективность и производительность по продукту R.

2. В непрерывном реакторе смешения проводится последовательная реакция типа А→R→S с константами скоростей к1=0,5 ч -1 и к2=0,8 ч -1 . Исходная концентрация вещества А равна 5 кмоль/м 3 . Продукты R и S на входе в реактор отсутствуют. Рассчитать необходимый объем реактора вытеснения, степень превращения вещества А, селективность и выход целевого продукта.

3. Процесс описывается параллельной реакцией типа

с константами скоростей к1= 0,28 л/(моль/мин) и к2 = 0,12 л/(моль/мин). Процесс проводится в реакторе вытеснения объемом 140 л. Поток вещества А поступает с концентрацией 1,6 моль/л. Степень превращения вещества А составляет 0,7. Определить производительность реактора по продукту R.

4. Процесс описывается параллельной реакцией типа

с константами скоростей к1= 0,28 мин -1 и к2 = 0,12 мин -1 . Объемный поток вещества А с концентрацией 1,6 моль/л равен 100 л/мин. Процесс проводится в реакторе вытеснения. Определить объем реактора и концентрацию вещества S при условии, что производительность по продукту R составляет 4,8 кмоль/ч.

5. Процесс описывается параллельной реакцией типа

с константами скоростей к1= 0,28 л/(моль/мин)и к2 = 0,12 л/(моль/мин). Объемный поток вещества А с концентрацией 1,6 моль/л равен 100 л/мин. Объем реактора вытеснения — 0,4 м3 Определить производительность реактора продукту R и селективность процесса по веществу S.

6. Процесс описывается реакцией первого порядка типа А → 2R с константой скорости к = 0,0024 с -1 . Исходная концентрация вещества А — 1,6 моль/л. Объемный расход вещества А – 3,6 м3/ч. Заданная степень превращения по веществу А равна 0,86. Определить производительность реактора вытеснения по продукту R и его объем.

7. Процесс описывается реакцией второго порядка с константой скорости 0,023 м3/(кмоль∙ с). Исходная концентрация вещества А составляет 0,6 моль/л, объемный расход вещества А -3,6 м3/ч. Определить производительность реактора вытеснения объемом 200 л по продукту R.

8. Жидкофазная реакция типа А → 2R имеет константу скорости, равную 0,12 мин -1 . Концентрация вещества А равна 3,0 моль/л. Реакция осуществляется в реакторе вытеснения объемом 0,3 м3. Заданная степень превращения 0,88. Рассчитать производительность по продукту R.

9. Жидкофазный процесс описывается сложной реакцией.

10. Исходная смесь, в которой отсутствуют продукты реакций, подаются с объемным расходом 0,005л/с и концентрацией вещества А, равной 10 кмоль/м3. На выходе из реактора концентрации веществ равны СВ =2, СА=5, СR=1, СS=3 кмоль/м3. Определить расход реагента В.

11. Процесс описывается реакцией типа А + В→ R с константой скорости k = 0.28 л/(моль/мин). Объемные потоки вещества А с концентрацией 1,6 моль/л и вещества В с концентрацией 2,0 моль/л равны 100 л/мин. Процесс проводится в реакторе смешения объемом 1,2 м 3 . Концентрация вещества А на входе в реактор составляет 3,4 моль/л. Определить производительность реактора по продукту R.

12. Процесс описывается реакцией типа А + В → R с константой скорости k = 0,54 л/(моль/мин). Объемные потоки вещества А с концентрацией 1,8 моль/л и вещества В с концентрацией 2,7 моль/л равны 100 и 80 л/мин. Производительность реактора по продукту R составляет 8,64 кмоль/ч, концентрация продукта R на выходе — 0,8 моль/л. Определить требуемый объем реактора смешения

13. Процесс описывается реакцией типа 2А → R с константой скорости k = 0,64 л/(моль/мин). Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А -1,8 кмоль/м 3 , производительность реактора по продукту R – 3,8 кмоль/ч. Определить требуемый объем реактора смешения.

14. Процесс описывается реакцией типа А → 2R с константой скорости k = 0,24 мин -1 . Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А — 1,8 кмоль/м 3 , производительность реактора по продукту R – 5,8 кмоль/ч. Определить требуемый объем реактора смешения и объемный расход исходной смеси.

15. Процесс описывается обратимой реакцией первого порядка типа 2А R с константами скоростей: прямой k1 = 61,4 м 3 /(кмоль/ч) и обратной k2 = 2,4 ч -1 реакций. Заданная степень превращения вещества А составляет 0,8, исходная концентрация вещества А -1,4 моль/л. Объем реактора смешения равен 0,22 м 3 . Определить производительность реактора по продукту R за час.

П. Реактор идеального вытеснения (РИВ)

В РИС все параметры по объему постоянны.

Физическая модель РИВ-Н– длинная узкая труба, в которой все частицы движутся в заданном направлении, не перемешиваясь и вытесняя, подобно поршню, находящиеся впереди частицы потока и постепенно потоки вещества претерпевают превращение по высоте реактора. Время пребывания всех частиц в гаком реакторе постоянно:

Все характеристики (концентрация СA, степень превращения ХА, тем­пература Т и др.) изменяются плавно по объему реактора,поэтому материальный баланс для всего объема реактора составить нельзя.

Рис.2. Графики зависимостей:

а) СА=f (τ или H) б) w= f (τ или H) в)ХА= f (τ или H)

— скорость процесса к единице объема

Выбирают бесконечно малый объем реактора dVи для него составляют материальный баланс. Затем проводят интегрирование этих бесконечно малых объемов по всему объему реактора.

Пусть простая необратимая реакция протекает в реакторе без изменения объема υ:

реагент продукт А → R . CAпонижается, ХА увеличивается. Материальный баланс процесса: Gприх.=Gрасх., Gрасх.=Gулетевш.частиц +Gчастиц.прореагр., в ХР

где ,С А соответственно начальная и текущая концентрации ;

υ- объемный расход

,

где V- объем реактора (м 3 );

dV- элементарный объем реактора (м 3 ).

;

(Приход)

Уравнение мат. баланса

элементарного объема РИВ-Н

Для получения уравнения мат. баланса всего реактора полученное уравне­ние после разделения переменных проинтегрируем (по объему всего реактора):

Характеристическое уравнение РИВ-Н.

где wA находим, зная кинетику процесса.

Характеристическое уравнение РИВ-Н позволяет, зная кинетику процесса

(для нахождения wА), определить время τпребывания реагентов в реакторе доля достижения заданной степени превращения ХА, а затем — и размеры реактора.

Для реакции п -го порядка :

,

где п — порядок реакции.

— зависит только от степени превращения ХА и не зависит от начальной концентрации ;

В некоторых производственных реакторах степень превращения ХА столь незначительна, что для расчета можно применить модель РИВ— это трубчатые контактные аппараты с катализатором в трубах или меж­трубном пространстве («кожухотрубчатые»), служащие для гетерогенных газофазных реакций.

Модель вытеснения также применяется при проектировании жидкофазных трубчатых реакторов с большим отношением длины трубы к ее диаметру.

При одинаковых условиях проведения одной и той же реакции для достижения равной глубины превращения среднее время пребывания реагентов в проточном реакторе идеального смешения больше, чем в реакторе идеального вытеснения. В РИС концентрации во всех точках равны конечной концентрации, а в РИВ в 2-х соседних точках концентрации реагентов отличаются. Скорость реакции, согласно ЗДМ пропорциональна концентрации реагентов. Следовательно в РИВ она всегда выше, чем в РИС. Т.е. требуется меньшее время пребывания для достижения той же глубины превращения.

Дата добавления: 2016-06-02 ; просмотров: 4302 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнение материального баланса реактора идеального вытеснения

2.12. Химические реакторы, их основные типы. Материальный и тепловой балансы для реакторов полного смешения и идеального вытеснения

Химический реактор – основной аппарат, где протекает хим. процесс.

Основной показатель эффективности работы реактора – интенсивность (И).

И – отношение производительности к реакционному объему или поверхности контакта. (П/V; П/S). От интенсивности зависит время, затрачиваемое на производство единицы продукции. А время зависит от степени превращения, начальной концентрации реагентов, скорости хим. процесса.

По изменению параметров процесса во времени

Реакторы периодического действия – происходит падение движущей силы процесса во времени из-за уменьшения концентрации реагентов, т.е процесс не стационарен во времени и требует корректировку параметров процесса.

Реакторы непрерывного действия (стационарные) – постоянство движущей силы процесса. Все параметры могут изменятся от точки к точке внутри аппарата, но сохраняют свои значения во времени.

По температурному режиму: высокотемпературные, низкотемпературные

Адиабатические реакторы – при спокойном (без перемешивания)течении потока реагентов не имеют теплообмена с окружающей средой, хорошая теплоизоляция. Все тепло экзотермической реакции собирается (накапливается) потоком реагирующих веществ.

Изотермические реакторы – температура постоянна во всех точках реакционного объема, (выгоднее, облегчают автоматизацию). Достигается в реакторах с мешалкой или в кипящем (псевдоожиженном ) слое.

Политермические реакторы – частичная компенсация тепла реакции путем подвода (отвода) теплоты. Это реакторы с малой степенью смешения реагирующих веществ и теплообменниками.

По давлению: работающие при высоком, повышенном, нормальном и низком (под вакуумом)

По типу процесса: гомогенные, гетерогенные

По степени перемешивания реагентов: (реакторы непрерывного действия)

Реактор идеального вытеснения – ламинарное движение реакционной массы по всему фронту реактора. Основные показатели процесса изменяются по высоте реактора. В них достигается наибольшая величина движущей силы. Это емкость (шахта), в которой на решетки помещен твердый зернистый материал, высота его слоя больше диаметра реактора. Через слой проходит газ и вступает во взаимодействие с материалом (конц. реагентов понижается по высоте слоя).

Реакторы полного смешения – газы и жидкости, поступающие в реактор, мгновенно смешиваются со всем содержимым реактора, т.к. скорость циркуляционных движений по высоте и сечению реактора во много раз больше, чем скорость линейного движения по оси реактора. Концентрация веществ и степень превращения во всем объеме реактора одинакова и равна конечной. Это реакторы кипящего слоя с мешалкой; с перемешивающими устройствами в жидкостях, суспензиях твердых веществ и др.

Материальный баланс полного смешения

Уравнение материального баланса периодического реактора полного смешения

где wrJ — скорость хим. реакции; cJ – концентрация реагента.

Уравнение материального баланса стационарного реактора полного смешения

где cJ,0 и cJ,f – концентрация реагента на входе и на выходе из реактора; V – полный объем реактора; ν – объемный расход реакционного потока.

Материальный баланс идеального вытеснения

Уравнение материального баланса периодического реактора идеального вытеснения

где uz – линейная скорость потока; z – координата оси канала; τ – время.

Уравнение материального баланса стационарного реактора идеального вытеснения

Тепловой баланс

Тепловой баланс реактора полного смешения в неизотермическом (непостоянная температура) нестационарном режиме

где cp— средняя теплоемкость реакционной смеси; ρ — средняя плотность смеси; ∆H — тепловой эффект реакции на 1 моль реагента; KT — коэффициент теплопередачи; FTO — поверхность теплообмена с окружающей средой; ∆TTO — движущая сила теплообмена (средняя разность температур в реакторе и внешней среде);

Тепловой баланс реактора полного смешения в неизотермическом (непостоянная температура) стационарном режиме

Тепловой баланс реактора идеального вытеснения

где Hj – тепловой эффект реакции j; wj – скорость реакции j; cp, ρ – теплоемкость и плотность реакционной среды; h — коэффициент теплоотдачи; TС — температура хладагента; F — поверхность теплообмена; V – полный объем реактора.


источники:

http://helpiks.org/8-25618.html

http://sliv1985.narod.ru/index/0-28