Уравнение метана из ацетата натрия

Уравнение метана из ацетата натрия

Получение метана

Метан в лаборатории получают прокаливанием безводного ацетата натрия с натронной известью. Натронная известь представляет собой смесь гидроксида натрия с гидроксидом кальция. Возьмем натронную известь и ацетат натрия, тщательно перемешаем и поместим в пробирку. Закроем пробирку пробкой с газоотводной трубкой. Нагреем смесь. Через некоторое время начинает выделяться метан

Поджигаем метан . Он горит почти бесцветным пламенем. При горении метана образуется углекислый газ и вода.

Оборудование: штатив, пробирка с газоотводной трубкой, ступка фарфоровая с пестиком, шпатель, горелка.

Техника безопасности. Соблюдать правила работы с горючими газами и нагревательными приборами.

Постановка опыта и текст – к.п.н. Павел Беспалов.

Опыты по химии. Предельные углеводороды

Постановка опытов и текст – к.п.н. Павел Беспалов.

Получение метана

Метан в лаборатории получают прокаливанием безводного ацетата натрия с натронной известью. Натронная известь представляет собой смесь гидроксида натрия с гидроксидом кальция. Тщательно перемешаем натронную известь с ацетатом натрия и поместим в пробирку. Закроем пробирку пробкой с газоотводной трубкой. Нагреем смесь. Через некоторое время начинает выделяться метан

CH3COONa + NaOH = CH4 + Na2CO3

Оборудование: пробирка, газоотводная трубка, промывалка, кристаллизатор, цилиндр, горелка, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами и нагревательными приборами. Не допускать попадания натронной извести на кожу.

Горение метана и изучение его физических свойств

Заполним метаном цилиндр. Метан представляет собой бесцветный газ, мало растворимый в воде. Он легче воздуха, поэтому легко улетучивается из открытого цилиндра. При поджигании метан загорается. При сгорании метана образуются углекислый газ и водяные пары.

CH4 + 2О2 = СО2 + 2 Н2О

Оборудование: пробирка, газоотводная трубка, промывалка, кристаллизатор, цилиндр, горелка, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами и нагревательными приборами. Не допускать попадания натронной извести на кожу.

Взрыв метана с кислородом

Для полного сгорания метана на один объем метана нужно взять два объема кислорода (см. уравнение реакции). Пластиковую бутылку, разделенную метками на три равные части, заполним способом вытеснения воды одной частью метана и двумя частями кислорода. При поджигании смеси происходит взрыв — полное сгорание метана в кислороде.

CH4 + 2О2 = СО2 + 2 Н2О

Оборудование: пробирка, газоотводная трубка, промывалка, кристаллизатор, цилиндр, горелка, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами и нагревательными приборами.

Отношение метана к раствору перманганата калия и бромной воде

Получаем метан прокаливанием безводного ацетата натрия с натронной известью. Пропустим метан через раствор перманганата калия. Никаких видимых изменений не наблюдаем. Бромная вода также не изменяет своей окраски. Метан стоек к окислителям и не вступает в реакцию с бромом при данных условиях.

Оборудование: пробирка, газоотводная трубка, промывалка, кристаллизатор, цилиндр, горелка, штатив.

Техника безопасности. Соблюдать правила работы с горючими газами и нагревательными приборами.

Горение жидких углеводородов

Возьмем для опыта гексан и керосин.

Молекула гексана содержит шесть атомов углерода. Керосин – это смесь молекул алканов, в составе которых от двенадцати до восемнадцати атомов углерода. Подожжем небольшие количества гексана и керосина. Гексан загорается сразу: алканы с небольшой молекулярной массой загораются легко.

Поджечь керосин оказывается немного труднее, появляется коптящее пламя. В виде копоти выделяется несгоревший углерод. Большинство алканов горят коптящим пламенем из-за высокого содержания углерода. Мы убедились в том, что алканы с небольшой молекулярной массой загораются легче, чем алканы с большой молекулярной массой.

Оборудование: фарфоровые чашки, лучина, огнезащитная прокладка.

Техника безопасности. Соблюдать правила работы с горючими жидкостями. Работать с небольшими количествами жидких углеводородов (не более 2 мл).

Горение твердых углеводородов (на примере парафина)

Парафин – смесь твердых алканов, содержащих в своем составе от 16 до 40 атомов углерода. Твердый парафин на воздухе загорается с трудом. Кипящий парафин на воздухе самовозгорается. Нагреем парафин до кипения. Выливаем кипящий парафин из пробирки в кристаллизатор, наполненный водой. Кипящий парафин, смешиваясь с воздухом, загорается. При горении парафина образуются углекислый газ и водяные пары.

Оборудование: пробирка, зажим пробирочный, горелка, кристаллизатор.

Техника безопасности. Соблюдать правила работы с горючими веществами. Не наклоняться над кипящим парафином. Не допускать попадание парафина на одежду, кожу.

Установление качественного состава предельных углеводородов

Общим методом определения углерода и водорода в органических соединениях является окисление веществ оксидом двухвалентной меди. При этом углерод окисляется до углекислого газа, а водород до воды. Оксид меди (II) восстанавливается до меди или до оксида одновалентной меди, имеющих красный цвет

С18Н38 + СuО = 18СО2 + 19 Н2О + 55Сu

Углекислый газ обнаруживают при помощи известковой воды. Известковая вода мутнеет от углекислого газа.

Ca (OH)2 + CO2 = CaCO3 ↓ + H2O

Воду обнаруживают безводным сульфатом меди (II). Под действием воды белый сульфат меди (II) переходит в голубой кристаллогидрат — медный купорос

CuSO4 + 5H2O = CuSO4 * 5 H2O

Оборудование: пробирка с газоотводной трубкой, стакан, штатив, горелка.

Техника безопасности. Соблюдать правила работы с нагревательными приборами.

Определение содержания хлора в органических соединениях

Качественно определить содержание галогена в органическом соединении можно при помощи медной проволоки. При нагревании с оксидом меди (II) галогенсодержащие вещества сгорают с образованием летучих соединений, окрашивающих пламя в сине-зеленый цвет. Эта качественная реакция на галогены в органических соединениях называется пробой Бейльштейна. Для проведения пробы медную проволоку прокаливают в пламени горелки, опускают в жидкость или касаются твердого вещества и вновь вносят в пламя горелки. Появление сине-зеленого окрашивания, свидетельствует о наличии галогена в органическом соединении. Испытаем диметиламин хлорид и убедимся в том, что в его составе присутствует галоген — хлор.

Оборудование: горелка, медная спираль.

Техника безопасности. Соблюдать правила работы с нагревательными приборами.

Задания 32 (C3). Реакции, подтверждающие взаимосвязь органических соединений

942ACC

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

Пояснение:

1) Дегидрогалогенирование хлорбутана при действии спиртового раствора щелочи:

2) Окисление двойной связи бутена-1 подкисленным раствором перманганата калия (разрыв двойной связи):

3) Реакция этерификации – образование сложного эфира из спирта и карбоновой кислоты:

4) Щелочной гидролиз изопропилпропионата с образованием пропионата натрия и изопропилового спирта:

5) Сплавление соли пропионовой кислоты с щелочью с образованием этана и карбоната натрия:

372960

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

При написании уравнений реакций используйте структурные формулы органических веществ.

Пояснение:

1) Из ацетата натрия метан получают по реакции декарбоксилирования, которая протекает при его сплавлении со щелочью, например, гидроксидом натрия:

2) При взаимодействии метана с хлором в мольном соотношении один к одному образуются преимущественно монохлорметан (Х1) и хлороводород:

3) При обработке монохлорметана водным раствором щелочи протекает нуклеофильное замещение атома хлора на гидроксильную группу с образованием метилового спирта (Х2):

4) Получить метаналь (формальдегид) из метилового спирта можно, действуя слабым окислителем – оксидом меди (II) при нагревании:

5) Перманганат калия, подкисленный серной кислотой, окисляет метаналь до углекислого газа и воды. При этом, так как среда раствора кислая, перманганат-ион восстанавливается до двухвалентного марганца:

D33737

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

При написании уравнений реакций используйте структурные формулы органических веществ.

Пояснение:

1) При действии на пропанол-1 бромоводорода происходит реакция замещения гидроксильной группы в спирте на атом брома с образованием 1-бромпропана (Х1)

2) Получить пропен из 1-бромпропана можно по реакции дегидробромирования со спиртовым раствором щелочи, например, гидроксидом натрия:

3) В кислой среде пропен может вступить в реакцию с водой в соответствии с правилом Марковникова – водород идет к наиболее гидрогенизированному атому, а гидроксильная группа к наименее гидрогенизированному. При этом образуется изопропиловый спирт:

о С), а не нагрев. При нагревании будет происходить глубокое окисление до бензоата калия и карбоната калия.

Проблема в том, что по всей видимости, в этом задании банка ФИПИ, которое кстати попалось некоторым на досрочном экзамене ЕГЭ в апреле 2016-го, опечатка, и имелось ввиду 0 о С, а не нагрев.

995FCC

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

При написании уравнений реакций используйте структурные формулы органических веществ.

1) При действии на бромэтан водного раствора щелочи протекает нуклеофильное замещение атома брома на гидроксид-ион, при этом образуется этиловый спирт (Х1):

2) Этиловый спирт (Х1) можно превратить в уксусную кислоту, окислив его водным раствором перманганата калия в кислой среде при нагревании:

3) Уксусная кислота вступает в реакцию нейтрализации с щелочами, например, с гидроксидом натрия, при этом образуется ацетат натрия (Х2):

4) После выпаривания водного раствора ацетата натрия (Х2) и сплавления полученного твердого ацетата натрия с твердым гидроксидом натрия происходит реакция декарбоксилирования с образованием метана (X3) и карбоната натрия:

5) Пиролиз метана при 1500 о C приводит к образованию ацетилена (X4) и водорода:

1C6CBE

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

При написании уравнений реакций используйте структурные формулы органических веществ.

1) Пропилацетат, являясь сложным эфиром, подвергается щелочному гидролизу с образованием ацетата калия (X1) и пропанола:

2) Из ацетата калия по реакции декарбоксилирования, которая протекает при его сплавлении с щелочью, получают метан:

3) При температуре 1200 o C и быстром охлаждении (для предотвращения разложения ацетилена до простых веществ) метан разлагается на ацетилен (X2) и водород:

4) Димеризация ацетилена происходит в присутствии катализаторов – солянокислого раствора хлоридов меди (I) и аммония – с образованием винилацетилена:

5) При пропускании винилацетилена через бромную воду наблюдается обесцвечивание бромной воды за счет присоединения брома к кратным связям с образованием насыщенного бромпроизводного бутана – 1,1,2,2,3,4-гексабромбутана (X3):

26D1FD

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

При написании уравнений реакций используйте структурные формулы органических веществ.

1) В промышленности формальдегид получают окислением метана на катализаторе фосфате алюминия при температуре 450 o C и давлении 1-2 МПа:

2) При гидрировании на катализаторах (Pt, Pd, Ni) карбонильная группа формальдегида восстанавливается до гидроксильной, т.е. альдегид превращается в спирт – метанол (X1):

3) Металлический натрий взаимодействует с метанолом с образованием метилата натрия (X2) и выделением водорода:

4) Реагируя с соляной кислотой, метилат натрия обратно превращается в метанол (X1):

5) Перманганат калия в кислой среде при нагревании окисляет метиловый спирт до углекислого газа (X3) (Mn +7 → Mn +2 ; C -2 → C +4 ):

6C53D6

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) В присутствии оксида алюминия при температуре 400 o C происходит дегидратация спирта с образованием этилена (X1) и воды:

2) Перманганат калия в нейтральной среде окисляет этилен до этиленгликоля (X2) (Mn +7 → Mn +4 ; 2C -2 → 2C -1 ):

3) При действии избытка бромоводорода на этиленгликоль происходит замещение гидроксильных групп на анионы брома, в результате чего образуется 1,2-дибромэтан (X3):

4) Этин (или ацетилен) можно получить действием на 1,2-дибромэтан спиртовым раствором щелочи:

5) По реакции М.Г. Кучерова в присутствии солей ртути в кислой среде (в водном или спиртовом растворе) ацетилен превращается в этаналь:

5B7666

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) Получить ацетон (пропанон) можно по реакции М.Г. Кучерова, действуя на пропин (X1) водой в присутствии солей ртути в кислой среде (в водном или спиртовом растворе):

2) При гидрировании на катализаторах (Pt, Pd, Ni) карбонильная группа кетона восстанавливается до гидроксильной, т.е. кетон превращается во вторичный спирт – изопропанол (X2):

3) При действии бромоводорода на изопропанол происходит нуклеофильное замещение гидроксильной группы на анион брома, в результате чего образуется 2-бромпропан:

4) При действии спиртового раствора щелочи 2-бромпропан превращается в ненасыщенный углеводород – пропилен (X3):

5) Дегидрированием пропилена на катализаторе (Pt, Pd, Ni) можно получить пропин (X1):

EE403A

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) Получить бромметан можно действием брома на метан (X1) на свету. Реакция замещения протекает по свободнорадикальному механизму:

2) При взаимодействии бромметана с аммиаком вначале образуется соль амина, которая при избытке аммиака превращается в свободный амин. В случае метиламина образуются метиламин (X2) и бромид аммония:

3) Азотистая кислота неустойчива, поэтому ее получают в ходе реакции, действуя на подкисленный раствор амина нитритом натрия. В случае первичного амина – метиламина — наблюдается выделение азота, а в растворе образуется метанол (X3):

4) Действием на метиловый спирт оксидом меди (II) при нагревании получим формальдегид, при этом Cu +2 восстановится до Cu 0 :

5) При окислении формальдегида перманганатом калия в кислой среде выделяется углекислый газ (X4) (Mn +7 → Mn +2 ; C 0 → C +4 ):

11E9DF

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) Алканы с основной цепью 6 и более атомов углерода способны вступать в реакцию дегидроциклизации, при этом образующийся шестичленный цикл далее дегидрируется и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода. В данном случае образующийся циклогексан дегидрируется в бензол (X1):

2) Алкилирование ароматических углеводородов алкилгалогенидам и в присутствии безводного AlCl3является классическим примером реакции Фриделя-Крафтса. Реакция представляет собой электрофильное замещение в бензольном кольце. Алкилирование бензола метилхлоридом приводит к образованию толуола (X2):

3) При действии на толуол избытком хлора на свету все атомы водорода в метильном радикале толуола замещаются на хлор. Реакция замещения протекает по свободнорадикальному механизму:

4) При щелочном гидролизе тригалогенидов с атомами хлора при одном атоме углерода с высокими выходами образуются соли карбоновых кислот (в данном случае бензоат калия (X3)):

5) Из бензоата калия по реакции декарбоксилирования, которая протекает при его сплавлении с щелочью, получают бензол (X1):

AC20AD

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) 1,2-дихлорэтан является геминальным дихлорпроизводным этана. В условиях водного раствора щелочи 1,2-дихлорэтан превращается в карбонильное соединение – ацетальдегид:

2) При восстановлении карбонильных соединений водородом образуются спирты. Так, пропуская смесь паров ацетальдегида и водорода над никелевым катализатором, можно получить этанол (X1):

3) Замещение гидроксильной группы спирта на аминогруппу происходит в жестких условиях. Пропуская пары этанола и аммиак над нагретым оксидом алюминия, получают этиламин:

4) При пропускании через водный раствор этиламина углекислого газа происходит образованием гидрокарбоната этиламмония (X2):

5) При нагревании гидрокарбонат этиламмония разлагается на углекислый газ, этиламин (X3) и воду:

Примечание: правильным может считаться вариант, в котором веществом Х2 является не гидрокарбонат, а карбонат этиламмония.

7EAE60

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) Ацетилен (этин) вступает в реакцию гидратации в присутствии солей ртути в водном растворе с образованием ацетальдегида (реакция Кучерова) (Х1):

2) Ацетальдегид при действии на него подкисленного водного раствора перманганата калия превращается в уксусную кислоту:

3) Уксусная кислота вступает в реакцию нейтрализации с гидроксидом натрия, при этом образуется ацетат натрия (Х2) и вода:

4) Ацетат натрия взаимодействует с галогеналканами с образованием сложных эфиров, в данном случае образуется метиловый эфир уксусной кислоты (метилацетат)(Х3):

5) Сложные эфиры в присутствии кислот могут вступать в реакцию гидролиза. При гидролизе метилацетата в кислой среде образуется уксусная кислота и метанол:

7E4C51

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) При действии спиртового раствора щелочи на любой из изомеров дибромэтана образуется ацетилен (X1):

2) Действуя на ацетилен (X1) водой в присутствии солей ртути в кислой среде (в водном или спиртовом растворе), получают ацетальдегид (X2) (реакция М.Г.Кучерова):

3) При окислении ацетальдегида перманганатом калия в кислой среде образуется уксусная кислота (Mn +7 → Mn +2 ; C +1 → C +3 ):

4) Получить хлоруксусную кислоту можно действием хлора на уксусную кислоту на свету. Реакция замещения протекает по свободнорадикальному механизму, в результате чего атом водорода при алкильном радикале замещается на хлор (X3):

5) При обработке хлоруксусной кислоты аммиаком образуется аминокислота – глицин:

39882С

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) При температуре выше 140 0 C в присутствии концентрированной серной кислоты спирты подвергаются внутримолекулярной дегидратации с образованием алкена и воды. В данном случае при 180 0 C и действии конц. H2SO4 пропанол-1 превращается в пропилен (X1):

2) При пропускании пропилена через бромную воду наблюдается обесцвечивание бромной воды за счет присоединения брома к двойной связи с образованием 1,2-дибромпропана (X2):

3) При действии спиртового раствора щелочи на 1,2-дибромпропан образуется пропин:

4) Действуя на пропин водой в присутствии солей ртути в кислой среде (в водном или спиртовом растворе), получают ацетон (X3) (реакция М.Г.Кучерова):

5) Пропуская смесь паров ацетона и водорода над палладиевым катализатором, получают пропанол-2 (или изопропанол) (X4):

A8F8C2

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) Циклопропан присоединяет бромоводород с раскрытием цикла, в результате чего образуется 1-бромпропан:

2) В лабораторных условиях алканы получают по реакции Вюрца из галогеналканов. Частичный положительный заряд на атоме углерода при галогене в галогенопроизводных делает возможной реакцию этих соединений с активными металлами. Моногалогеналканы уже при комнатной температуре взаимодействуют с натрием, превращаясь в алканы с удвоенным углеродным скелетом. Таким образом, из двух молекул 1-бромпропана получается н-гексан (X1):

3) Алканы, имеющие в молекуле шесть и более атомов углерода, могут вступать в более сложные реакции дегидрирования, в ходе которых отщепление водорода сопровождается замыканием цепи в цикл: реакции дегидрирования – циклизации. В данном случае гексан превращается в бензол (X2):

4) Толуол получают алкилированием бензола метилгалогенидом в присутствии катализатора AlCl3 (электрофильное замещение, механизм SE):

5) Метильная группа толуола окисляется перманганатом калия в кислой среде до карбоксильной группы, следовательно, толуол превращается в бензойную кислоту (X3) (Mn +7 → Mn +2 ; C -3 → C +3 ):

92C355

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

1) В лабораторных условиях пропан можно получить по реакции Вюрца из галогеналканов – хлорэтана и хлорметана, однако данная реакция сопряжена с образованием двух побочных продуктов – бутана и этана. Моногалогеналканы при комнатной температуре способны взаимодействовать с натрием:

2) Дегидрированием пропана на катализаторе (Pt, Pd, Ni) можно получить пропилен (X1):

3) При окислении алкена перманганатом в нейтральной среде на холоду образуется двухатомный спирт, щелочь и оксид марганца (IV). В данном случае из пропилена образуется пропандиол-1,2 (X2) (Mn +7 → Mn +4 ; C -2 → C -1 , C -1 → C 0 ):

4) Многоатомные спирты способны вступать в реакции нуклеофильного замещения с галогеноводородами. Действуя избытком бромоводорода на пропандиол-1,2 получается 1,2-дибромпропан (X3):

5) При действии спиртового раствора щелочи на дигалогеналкан – 1,2-дибромпропан – образуется пропин (X4):


источники:

http://www.yoursystemeducation.com/opyty-po-ximii-predelnye-uglevodorody/

http://scienceforyou.ru/reshenie-zadanij-egje-iz-banka-fipi/zadanija-38-reakcii-podtverzhdajushhie-vzaimosvjaz-organicheskih-soedinenij