Уравнение мгновенного линейного ускорения формула

Формулы ускорения в физике: линейное и центростремительное ускорение

Как известно, движение в классической физике описывается вторым законом Ньютона. Благодаря этому закону вводится понятие ускорения тела. В данной статье рассмотрим основные формулы ускорения в физике, которые используют понятия действующей силы, скорости и пройденного телом пути.

Понятие об ускорении через второй закон Ньютона

Если на некоторое физическое тело массой m действует внешняя сила F¯, то при отсутствии других воздействий на него, можно записать следующее равенство:

Вам будет интересно: Как правильно: ЗАКС или ЗАГС?

Здесь a¯ — векторная величина, получившая название линейного ускорения. Как видно из формулы, оно прямо пропорционально внешней силе F¯, поскольку массу тела можно считать величиной постоянной при скоростях намного меньших скорости распространения электромагнитных волн. Кроме того, вектор a¯ совпадает по направлению с F¯.

Приведенное выражение позволяет записать первую формулу ускорения в физике:

a¯ = F¯/m или a = F/m

Здесь второе выражение записано в скалярной форме.

Ускорение, скорость и пройденный путь

Еще один способ найти линейное ускорение a¯ заключается в исследовании процесса движения тела по прямой траектории. Такое движение принято описывать такими характеристиками, как скорость, время и пройденный путь. В этом случае ускорение понимается как скорость изменения самой скорости.

Для прямолинейного перемещения объектов справедливы следующие формулы в скалярной форме:

2) acp = (v2-v1)/(t2-t1);

Первое выражение представляет собой мгновенное ускорение, оно определяется как производная скорости по времени.

Вторая формула позволяет рассчитать среднее ускорение. Здесь рассматривается два состояния движущегося объекта: его скорость в момент v1 времени t1 и аналогичная величина v2 в момент времени t2. Время t1 и t2 отсчитывается от некоторого начального события. Отметим, что среднее ускорение характеризует в общем эту величину на рассмотренном временном промежутке. Внутри же него значение мгновенного ускорения может изменяться и значительно отличаться от среднего acp.

Третья формула ускорения в физике дает возможность определять также acp, но уже через пройденный путь S. Формула справедлива, если тело начинало движения с нулевой скорости, то есть когда t=0, v0=0. Этот тип движения называют равноускоренным. Его ярким примером является падение тел в поле гравитации нашей планеты.

Движение по окружности равномерное и ускорение

Как было сказано, ускорение является вектором и по определению представляет собой изменение скорости за единицу времени. В случае равномерного движения по окружности модуль скорости не меняется, однако постоянно изменяет направление его вектор. Этот факт приводит к возникновению специфического вида ускорения, получившего название центростремительного. Оно направлено к центру окружности, по которой тело совершает движение, и определяется по формуле:

ac = v2/r, где r — радиус окружности.

Эта формула ускорения в физике демонстрирует, что его значение с ростом скорости растет быстрее, чем с уменьшением радиуса кривизны траектории.

Примером проявления ac является движение автомобиля, входящего в поворот.

Мгновенное ускорение

Вы будете перенаправлены на Автор24

Пусть за время $\Delta $t движущаяся точка перешла из положения А в положение В (рис. 1.).

Рисунок 1. Мгновенное ускорение и его составляющие

Вектор $\overrightarrow$ задает скорость точки в положении А. В положении В точка приобрела скорость, отличную от $\overrightarrow$ как по величине, так и по направлению и стала равной $\overrightarrow=\overrightarrow+\triangle \overrightarrow$ . Перенесем вектор $\overrightarrow$ в точку А и найдем $\Delta $$\overrightarrow$.

Таким образом, ускорение есть векторная величина, равная первой производной скорости по времени.

Разложим вектор $\Delta $$\overrightarrow$ на две составляющие. Для этого из точки А по направлению скорости $\overrightarrow$ отложим вектор AD, по модулю равный $<\overrightarrow>_1$. Тогда вектор CD, равный $\Delta $$<\overrightarrow>_<\tau >$, определяет изменение скорости по модулю (величине) за время $\Delta $t, т.е. $\Delta $$<\overrightarrow>_<\tau >=<\overrightarrow>_1-\overrightarrow$. Вторая же составляющая вектора $\triangle \overrightarrow$ характеризует изменение скорости на время $\Delta $t по направлению — $\Delta $$<\overrightarrow>_n$. Составляющая ускорения, определяющая изменение скорости по величине, называется тангенциальным ускорением $<\overrightarrow>_<\tau >$. Численно она равна первой производной по времени от модуля скорости: $a_<\tau >=\frac

$.

Нормальное ускорение характеризует быстроту изменения скорости по направлению и направлено к центру кривизны траектории по нормали. Его называют также центростремительным ускорением. Полное мгновенное ускорение есть геометрическая сумма тангенциальной и нормальной составляющих: $\overrightarrow=<\overrightarrow>_<<\mathbf \tau >>+<\overrightarrow>_n$

Рисунок 2. Полное ускорение

Модуль полного мгновенного ускорения $a=\sqrt+a^2_n>$.

Движение материальной точки может быть следующих видов:

Готовые работы на аналогичную тему

Тело движется равноускоренно с начальной скоростью $v_0 = 5 м/с$. Определить мгновенное ускорение тела момент времени $t=7 с$, если его скорость в этот момент составила $26 м/с$.

Материальная точка движется по кривой с постоянным радиусом кривизны $R = 3 м$. Линейная скорость точки описывается уравнением $v=2t+t^2$. Найти мгновенное ускорение точки в момент $t = 3 c$. Определить тип движения точки.

Модуль полного мгновенного ускорения $a=\sqrt+a^2_n>$

Тангенциальное ускорение $a_<\tau >\left(3\right)=\frac

=2+2t=2+6=8\ м/с^2$

Скорость $v\left(5\right)=2\times 3+3^2=15\ м/c$

Нормальное ускорение $a_n\left(3\right)=\frac=\frac<<15>^2><3>=75$

Полное мгновенное ускорение $a\left(3\right)=\sqrt<8^2+<75>^2>=75.43\ м/с^2$

Точка равномерно движется по окружности радиусом 3 м

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 16 11 2021

Ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = 0. Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:


источники:

http://spravochnick.ru/fizika/kinematika/mgnovennoe_uskorenie/

http://www.av-physics.narod.ru/mechanics/acceleration.htm