Уравнение мгновенного значения напряжения с амплитудой 90

Раздел 4. Однофазные электрические цепи синусоидального тока

Раздел 4. ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Определить угловую частоту вращения ΩР, ротора генератора переменного тока при частоте питающего напряжения f = 50 Гц и угловую частоту ω ЭДС, если ротор вращается с частотой n1 = 1000 об/мин.

1. Число пар полюсов генератора: = 3

2. Угловая частота вращения ротора:

3. Угловая частота переменного тока:

или

Ответ: ΩР= 104,5 с-1; ω=314 с-1

Определить среднее значение синусоидального тока Iср по мгновенному его значению i=31,4sin(ωt+π/2)

Среднее значение синусоидального тока:

Для синусоидального напряжения и тока (рис. 4.4) запи­сать выражения для мгновенных их значений. Определить период Т и время t0, соответствующее начальной фазе тока Yi, а также мгновенные значения напряжений u1 и u2 для моментов времени t1 = 0,00167 с и t2 = 0,005 с, если частота тока f = 50 Гц.

Решение

1. Мгновенные значения напряжения и тока име­ют вид:

где Um, lm — амплитудные значения напряжения и тока.

2. Начальная фаза тока (в радианах):

3. Период переменного напряжения и тока:

4. Время начала отсчета, т. е. время, соответствующее начальной фазе тока:

5. Мгновенное значение напряжения в момент времени t1:

α1 = ωt1= 2πft1 = 2π×50×0,00167= π×0,167= π× = 30°;

6. Мгновенное значение напряжения в момент времени t2:

α1 = ωt1= 2πft1 = 2π×50×0,005= 0,5π = π× = 90°;

Ответ: T = 0,02 с; = и= 50 В; и2= 100 В

Определить максимальное Ет и действующее Е значе­ния ЭДС, наводимой в прямоугольной катушке с числом витков w = 200, вращающейся в однородном магнитном поле с постоян­ной частотой вращения п = 1500 об/мин. Размеры витка ка­тушки 3×3 (площадь витка SB = 3×3 = 9 см2). Индукция маг­нитного поля В= 0,8 Тл.

Построить кривые изменения магнитного потока и ЭДС во времени е, Ф(t), а также векторную диаграмму цепи.

1. Частота индуцированной в катушке ЭДС:

2. Максимальное значение магнитно­го потока:

3. Амплитуд­ное значение ЭДС, наводимой в катушке, находят исходя из мгновенного ее значения:

4. Действующее значение ЭДС катушки :

Е = Ет/ = 22.5/ = 16 В.

5. Изменение потока и ЭДС во времени и векторная диаграмма приведены на, рис. 4.4, а, б.

Переменный электрический ток задан уравнением

Определить период, частоту этого тока и мгновенные значения его при t0 = 0; t1=0,152 с. Построить график тока.

1. Уравнение синусоидального тока в общем случае имеет вид:

Сопоставляя это уравнение с заданным частным уравнением тока, устанавли­ваем, что амплитуда Im = 100 А, угловая частота w = 628 рад/с, начальная фаза

2. Период

3. Частота f =

4. Мгновенные значения тока найдем, подставив в уравнение тока заданные значения времени:

при t0 = 0: i0 = 100sin(wt0 — 60°)= 100sin(628×0 — 60°)= 100sin(-60°)= -86,5 А;

при t1 = 0,152 с: (значение ωt преобразуем в градусы, умножив на)

i1 = 100 sin(628×0,152 — 60° = 100 sin (15,2× 360°-60°),

Значения синусоидальной величины через 360° повторяются, поэтому мгновен­ное значение тока при угле ωt1= 15,2×360° будет таким же, как и при угле 0,2×360° = 72°;

5. Для построения графика i(ωt) нужно определить ряд значений тока, соответ­ствующих различным моментам времени (табл. 4.1 и рис. 4.8).

T

T

T

T

T

T

T

T

T

T

T

Рис. 4.5. Построение графика i(ωt) к задаче 4.5.

Ответ: ; f = ; i0 = -86,5 А; i1= 20,8 A.

Синусоидальный ток имеет амплитуду Im = 10 А, угловую частоту ω = 314 рад/с и начальную фазу Y = 30°.

По этим данным составить уравнение тока, начертbть график тока it), соот­ветствующий этому уравнению, и определить по графику и расчетом:

б) мгновенное значение тока при ωt = 0, ωt = 30°, ωt = 60°.

1. Составим уравнение мгновенного значения

2. Рассчитаем полный период тока

3. Определим мгновенные значения тока:

i1= 10sin(0 + 30°) = 10sin(30°) = 10×0,5 = 5 A

i2 = 10sin(30° + 30°) = 10sin(60°) = 10×0,865 = 8,65 A

i3= 10sin(60° + 30°) = 10sin(90°) = 10×1 = 10 A

Ответ: ; i1= 5 A; i2 = 8,65 A ; i3= 10 A

На рис. 4.7 изображены графики двух э. д.с. Написать уравнения кривых и определить угол сдвига фаз между ними. Определить из графиков мгновен­ные значения э. д.с. для момента времени t1 = 0,007 с и сравнить с результатами, полученными из уравнений.

Рис. 4.7. К задаче 4.7.

1. Составим уравнение мгновенного значения e1 и e2:

2. Вычислим угловую скорость:

=314 рад/c

3. Из графика e1 опережает e2 на ¼ периода, т. е.:

4. Рассчитаем e1 и e2 для момента времени t1 = 0,007 с:

e1= 40sin(ωtα) = 40sin(314×0,007 — π/2) = 40sin(0,628) = 40×0,59 = 23,5 В

5. Определим по графику значения e1 и e2 для момента времени t1 = 0,007 с:

Вывод: Значения ЭДС рассчитанные по формулам приблизительно равны значениям определенным по графику функций.

Э. д.с. электромашинного генератора выражается уравнением:

Определить число пар полюсов этого генератора, если известна скорость вращения ротора n = 75 об/мин.

На какой угол в пространстве поворачивается ротор генератора за ¼ периода?

Период э. д.с., наводимой в обмотке генератора, имеющего одну пару полюсов, равен времени одного полного оборота ротора. Угловая скорость вращения ротора может быть определена отношением полного угла, со­ответствующего одному обороту ротора, к периоду:

Однако генератор может иметь не одну пару, а p пар полюсов. Полный цикл изменения э. д.с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с р = 1), по­этому при одинаковой скорости вращения ротора период э. д.с. будет в р раз короче а частота в р раз больше.

Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая скорость вращения ротора.

Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в се­кунду, а при р > 1

f =;

где п частота вращения ротора, об/мин.

Из уравнения э. д.с. известна угловая частота ω = 314 рад/с;

При частоте вращения ротора n = 75 об/мин

При р= 1 за ¼ периода ротор повернется на ¼ окружности, т. е. в угловой мере на 90°. При р = 40 угол поворота ротора за ¼ периода будет в 40 раз меньше:

Написать уравнение э. д.с. генератора по следующим данным: за время, равное половине периода, ротор поворачивается в пространстве на угол φ0 = 45° при частоте вращения n = 750 об/мин.

Э. д.с. е переходит через нуль к отрицательному значению в момент времени t=8,34×10-3с от начала отсчета, а при t = 0 она равна 7000 В.

1. Определим число пар полюсов:

следовательно, за Т угол поворота Y = 90°.

Отсюда число пар полюсов

2. Вычислим частоту тока

f = = 50 Гц

3. Рассчитаем угловую частоту

4. Вычислим период

T =

5. Найдем начальную фазу Э. Д.С.

а) Э. Д.С. е переходит через нуль к отрицательному значению в момент времени t=8,34×10-3с от начала отсчета, т. е. время начальной фазы: .

б) Угол начальной фазы определим через отношение T/ tY

Y = 60°

6. Найдем значение Э. Д.С.

7. Запишем общее уравнение

Определить амплитудные Um и действующие U значения синусоидального напряжения, если его среднее значение Ucp = 198 В. Ответ округлить до целого.

1. Из формулы среднего значения найдем максимальное значение напряжения:

2. Вычислим действующее значение:

Определить амплитудное Um значение напряжения в электрической цепи синусоидального тока, частоту f, период Т переменного тока и начальный фазовый угол Yu, если мгновенное напряжение в сети и = 310sin(628 + π/3) В.

1. Из формулы мгновенного значения напряжения найдем:

2. Из формулы угловой частоты вычислим частоту тока f:

3. Вычислим период

T =

4. Начальный фазовый угол напряжения:

Задача 4.12.

Определить коэффициенты амплитуды Kа и формы Кф
периодического напряжения u(t), линейная диаграмма изменения
мгновенного значения во времени которого приведена на

1. Для синусоиды Ка:

В сеть переменного тока при напряжении U = 120 В и частоте f = 50 Гц включена катушка с индуктивностью L = 0,009 Г (RK = 0). Определить реактивную мощность Q ка­тушки и энергию WLm, запасаемую в магнитном поле катушки, записать выражения для мгновенных значений напряжения и, тока i, ЭДС самоиндукции eL за период, если начальная фаза напряжения Yu= π/2. Построить векторную и временную диаграммы.

Решение

1. Индуктивное сопротивление катушки:

2. Действующее значение тока:

3.Реактивная мощность цепи:

Q= UI = 120-40 = 4800 ВАр = 4,8 кВАр

4. Максимальная энер­гия, запасаемая в магнитном поле катушки:

WLm = LIm2/2

Im = I= 40×141= 56,4 A

WLm = 0,009×56,42 = 14 Дж

5. Амплитудное значение напряжения и тока:

Um =U= 120×1,41 =169 В

6. Амплитудные значения:

ЭДС самоиндукции катушки:

eL = uL = 169,2sin(314 t — π/2) В;

7. Построим векторную диаграмму для действующих значений:

— по оси абсцисс отложим вектор тока;

— вектор напряжения опережает ток на π/2;

— вектор ЭДС самоиндукции находится в противофазе напряжению и отстает от тока на π/2.

К сети переменного тока при напряжении U = 220 В и частоте f = 50 Гц подключен конденсатор с емкостью С = 20 мкФ.

Определить его реактивное сопротивление Хс, ток I, реактивную мощность Qc, максимальную энергию WCm, запасаемую в электрическом поле конденсатора.

Построить векторную диаграмму для данной цепи.

1. Реактивное сопротивление конденсатора:

2. Ток в цепи конденсатора:

3. Реактивная мощность цепи:

Qc= UI= 220×1,37 = 302 ВАр.

4. Максимальная энергия, запасаемая в электрическом поле конденсатора:

WCm = CU/2 = 20×10-6×2202/2 = 484×10-3 Дж.

7. Построим векторную диаграмму для действующих значений:

— по оси абсцисс отложим вектор тока;

— вектор напряжения отстает от вектора тока на π/2;

Решение типовых задач. Синусоидальные токи, напряжения

Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока

Общие сведения. Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.

Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).

Широкое применение в электротехнике нашли синусоидальные напряжения и токи:

,

В этих выражениях:

ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),

ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.

Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).

Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, — ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψuψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.

Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению

.

Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:

.

Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).

При синусоидальном токе i(t) = Im sin ωt интеграл

.

Следовательно, действующее значение синусоидального тока равно

Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

; .

Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.

Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,

.

Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

; .

Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:

; .

Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид

; ;

.

,
,
,

На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.

На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .

На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .

Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:

и реактивным сопротивлением емкости или емкостным сопротивлением XС:

.

Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:

и реактивной проводимостью емкости или емкостной проводимостью BС:

.

Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:

; ;

; ;

; .

Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна

Проекция напряжения на линию тока

называется активной составляющей напряжения.

Проекция напряжения на линию, перпендикулярную току,

называется реактивной составляющей напряжения.

Проекция тока на линию напряжения

называется активной составляющей тока.

Проекция тока на линию, перпендикулярную напряжению,

называется реактивной составляющей тока.

Имеют место очевидные соотношения:

; .

В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:

1. Полное сопротивление Z:

,

2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:

, ,

3. Полная проводимость Y:

,

4. Эквивалентные активная Gэк и реактивная Bэк проводимости:

, .

Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:

; ; ,

; ; ,

; ; .

Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).

Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.

Угол сдвига фаз пассивного двухполюсника .

Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:

Расчетные величины

;

называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство

.

Коэффициент мощности kм в цепи синусоидального тока определяется выражением:

.

Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.

Единица измерения полной мощности [ВА], реактивной – [ВАр].

Для вычисления мощностей удобно использовать следующие выражения:

;

;

.

Решение типовых задач. Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).

Задача 1.1. К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).

Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.

Решение. По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:

.

Реактивное сопротивление Х индуктивности L на частоте

.

; .

Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):

;

.

Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .

Действующие значения напряжений:

;

;

.

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

.

(т.к. ψi = 0),

.

Задача 1.2. К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.

Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,

Решение. Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :

.

Полное сопротивление цепи:

.

– тока i: ;

– напряжения на резисторе R: ;

– напряжения на емкости С: .

Угол сдвига фаз между напряжением u и током i:

.

Начальная фаза тока i определяется из соотношения . Откуда,

.

Мгновенные значения тока и напряжений на участках цепи:

;

;

.

; ; .

Задача 1.3. Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Решение. Имеем по определению:

;

;

.

Задача 1.4 По цепи по схеме рис. 1.10 действующие значения тока i на частотах

Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.

Решение. По определению на частотах f1 и f2 имеем:

; .

Непосредственно по схеме цепи рис. 1.10 находим:

Значения параметров R и С найдем из решения системы уравнений

Программа расчета в пакете MathCAD.

U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8←Присвоение переменным заданных условием задачи величин.
←Расчет полных сопротивлений на частотах f1 и f2.
←Расчет угловой частоты.
←Задание приближенных значений параметров R и C цепи.
Giver
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=.
←Присвоение вектору RC найденных значений параметров R и C цепи.

Значения параметров цепи: .

Задача 1.5. Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью

G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.

Решение. Полная проводимость

.

Действующее значение тока

.

.

Задача 1.6. Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Решение. Положительные направления напряжения и токов указаны на рис. 1.11.

Действующее значение тока IR = 0,1 А.

.

.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем

.

.

; , .

Выполняется соотношение .

Задача 1.7. Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.

Решение. Определяем действующее значение тока i

.

Полное сопротивление цепи

.

Определяем действующее значение напряжения u

.

Задача 1.8. Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ? Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Решение.

Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника

.

Эквивалентное активное сопротивление

.

Эквивалентное реактивное сопротивление

.

Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ? I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.

Полная проводимость двухполюсника

.

Эквивалентная активная проводимость

.

Эквивалентная реактивная проводимость

.

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

и .

; .

1.3. Задачи и вопросы для самоконтроля

1. Какими параметрами описываются синусоидальные токи в электрических цепях?

2. Как связаны между собой круговая частота ω и период Т синусоидального тока?

3. Что такое действующее значение переменного тока?

4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.

5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.

6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.

7. Запишите формулы для вычисления активной и реактивной мощностей.

8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.

9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.

10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

Дата добавления: 2016-01-29 ; просмотров: 102186 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Переменный электрический ток

Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC — Direct Current — постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz). Частота f = 1 /T

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = I ampsin(ωt); u = U ampsin(ωt)

С учётом начальной фазы:

i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1

Замечания и предложения принимаются и приветствуются!


источники:

http://helpiks.org/6-68145.html

http://tel-spb.ru/ac.html