Уравнение мгновенных значений синусоидального тока включает

Электрические цепи синусоидального тока

Содержание:

Электрические цепи синусоидального тока:

В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.

При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.

Цепь с активным сопротивлением

Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).

Если к активному сопротивлению R (рис. 11.1) приложено синусоидальное напряжение

где

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны ( = 0). Векторная диаграмма для цепи с активным сопротивлением изображена на рис. 11.16, временная диаграмма изображена на рис. 11.1в.

Математическое выражение закона Ома для цепи переменного тока с активным сопротивлением имеет вид:

Это вытекает из выражения (11.1), если левую и правую части уравнения разделить на =1,41.

Таким образом, действующее значение синусоидального тока I пропорционально действующему значению синусоидального напряжения U и обратно пропорционально сопротивлению R участка цепи, к которому приложено напряжение U. Такая интерпретация закона Ома справедлива как для мгновенных, так и для действующих и амплитудных значений синусоидального тока.

Активная мощность

Мгновенная мощность в цепи с активным сопротивлением определяется произведением мгновенных значений напряжения ка, т. е. р = ui. Это действие производится над кривыми тока и ряжения в определенном масштабе (рис. 11.1в). В результате учена временная диаграмма мгновенной мощности р. Как видно из временной диаграммы, мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению (рис. 11.1в). Эта мощность (энергия) необратима. От источника она поступает на потребитель и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется. Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное образование, называется активным сопротивлением, цепи с активным сопротивлением мгновенная мощность характеризует скорость преобразования электрической энергии в другие виды энергии.

Количественно мощность в цепи с активным сопротивлением определяется следующим образом:

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин -постоянной мощности UI и переменной , изменяющейся с двойной частотой.

Средняя за период мощность, равная постоянной составляющей мгновенной мощности UI, является активной мощностью Р. Среднее за период значение переменной составляющей, как и всякой синусоидальной величины, равно нулю, то есть

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учетом закона Ома определяется выражением:

где U- действующее значение напряжения; I— действующее значение тока.

Единицей активной мощности является ватт:

Поверхностный эффект и эффект близости

Сопротивление проводника постоянному току называют омическим сопротивлением и определяют выражением (2.8) Сопротивление проводника переменному току R называют активным.

Оказывается, что сопротивление проводника переменному току больше его омического сопротивления за счет так называемого поверхностного эффекта и эффекта близости, т. е.

Увеличение активного сопротивления вызвано неодинаковой плотностью тока в различных сечениях проводника (рис. 11.2а).

На рис. 11.2а изображено магнитное поле проводника цилиндрического сечения. Если по проводнику проходит переменный ток, то он создает переменный магнитный поток внутри и вне проводника. Этот поток в различных сечениях проводника индуктирует ЭДС самоиндукции, которая, согласно правилу Ленца. противодействует изменению тока как причине создания ЭДС Очевидно, центр проводника охвачен большим количеством магнитных линий (большее потокосцепление), чем слои, близкие к поверхности. Следовательно, в центре проводника ЭДС (сопротивление) больше, чем на поверхности проводника. Плотность на поверхности больше, чем в центре. Поэтому это явление и называется поверхностным эффектом.

Таким образом, поверхностный эффект уменьшает сечение проводника для переменного тока, а следовательно, увеличивает активное сопротивление R.

Отношение активного сопротивления проводника к его сопротивлению определяет коэффициент поверхностного эффекта (кси)

График зависимости коэффициента поверхностного эффекта от параметра проводника d, его удельной проводимости , магнитной проницаемости материала проводника и частоты переменного тока , проходящего по проводнику, показан на рис. 11.26.

При токах большой частоты (радиочастотах) ток в центре проводника отсутствует. Поэтому такие проводники делают трубчатыми, т.е. полыми.

На величину активного сопротивления проводника R оказывает влияние и эффект близости.

Если токи в двух параллельных проводах, расположенных близко друг к другу, направлены в одну сторону, то элементы сечения водников, удаленных на большее расстояние друг от друга, цепляются с меньшим магнитным потоком и имеют большую плотность тока (заштриховано на рис. 11.3а), чем элементы сечения проводников, расположенные близко друг к другу.

Если же токи в близко расположенных параллельных проводах направлены в различные стороны, то большая плотность тока на-дается в элементах сечения проводников, расположенных ближе друг к другу (заштриховано на рис. 11.36).

Таким образом, эффект близости в проводниках также влияет активное сопротивление проводников за счет наведения в различных элементах сечений проводников различных ЭДС взаимоиндукции, направление которых определяется правилом Ленца.

Цепь с идеальной индуктивностью

Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т.е. R= О и С=0.

Если в цепи идеальной катушки индуктивностью L (рис. 11.4а) проходит синусоидальный ток , то этот ток создает в катушке синусоидальный магнитный поток , который индуктирует в катушке ЭДС самоиндукции, равную согласно (9.11)

так как

Очевидно, эта ЭДС достигает своего амплитудного значения тогда, когда :

Тогда

Таким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90° = (рис. 11.46, в).

По второму закону Кирхгофа для мгновенных значений можно записать

Откуда

Тогда напряжение, приложенное к цепи с идеальной индуктивностью (см. (11.5)):

Очевидно, напряжение достигает своего амплитудного значения Um тогда, когда :

Следовательно,

Таким образом, напряжение, приложенное к цепи с идеальной ин-ивностью, как и ток в этой цепи, изменяется по синусоидально-жону, но опережает ток по фазе на угол 90°= (рис. 11.46, в).

Резюмируя все вышесказанное, можно сделать вывод: для существования тока в цепи с идеальной индуктивностью необходимо ожить к цепи напряжение, которое в любой момент времени но по величине, но находится в противофазе с ЭДС, вызванной таким током (рис. 11.46, в).

Временная диаграмма (рис. 11.4в) еще раз иллюстрирует правило Ленца: ЭДС противодействует изменению тока.

Если уравнение (11.10) разделить на =1,41, то получается =, откуда

Это уравнение (11.12а) и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.

Закон Ома для этой цепи можно записать иначе:

Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи синусоидального тока с идеальной катушкой равна произведению мгновенных значений напряжения и тока

где

Следовательно,

Полученное уравнение умножают и делят на 2:

Таким образом, мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой.

Следовательно, среднее значение этой мощности за период Яс, как и любой синусоидальной величины, т. е. активная потребляемая мощность, в этой цепи равна нулю, Р= 0.

Временная диаграмма (рис. 11,4в) подтверждает этот вывод. На диаграмме видно, что мгновенная мощность () в рассматриваемой цепи изменяется по синусоидальному закону с двойной частотой.

То есть в 1-ю и 3-ю четверти периода мощность (энергия) источника накапливается в магнитном поле индуктивности. Максимальное значение накапливаемой в магнитном поле идеальной катушки энергии по (9.12) равно

Во 2-ю и 4-ю четверти периода эта мощность (энергия) из магнитного поля идеальной катушки возвращается к источнику.

Таким образом, в цепи переменного тока с идеальной катушки мощность не потребляется (Р= 0), а колеблется между источником и магнитным полем индуктивности, загружая источник и провода.

Такая колеблющаяся мощность (энергия), в отличие от активной, потребляемой, называется реактивной.

Обозначается реактивная мощность буквой Q и измеряется в варах, т.е. [Q]=вар (вольт-ампер реактивный).

Величина реактивной мощности в рассматриваемой цепи определяется выражением

Так как реактивная мощность QL имеет место в цепи с индуктивным сопротивлением, то индуктивное сопротивление считается реактивным сопротивлением X индуктивного характера, т. е. XL.

Цепь с емкостью

Если конденсатор емкостью С подключить к источнику с постоянным напряжением U (рис. 11.5а), то ток зарядки конденсатора ходит в цепи очень короткое время, пока напряжение на конденсаторе Uc не станет равным напряжению источника U.

Ток в рассматриваемой цепи (рис. 11.5а) практически отсутствует (амперметр А покажет I=0).

Если же конденсатор подключить к источнику с синусоидальным напряжением (рис. 11.56), то ток в цепи конденсатора существует все время, пока цепь замкнута, и амперметр А покажет этот ток. Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжена конденсаторе Uc отстает по фазе от напряжения источника и зарядке, и при разрядке конденсатора. Например, пока напряжение на конденсаторе достигает значения 1, напряжение источника достигнет значения 2 (рис. 11.5в), т. е. конденсатор заряжается; пока конденсатор зарядится до напряжения 2, напряжение источника уменьшится до напряжения 3 — конденсатор разряжается на источник и т.д. Однако ток проходит только в цепи конденсатора. Через диэлектрик конденсатора ток не проходит.

Таким образом, если к конденсатору емкостью С приложено синусоидальное напряжение , то в цепи конденсатора проходит ток i (рис. 11.6а):

где q= Си согласно (6.3).

Очевидно, ток в цепи конденсатора достигает амплитудного значения тогда, когда :

Тогда

Как видно, ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°=

Следовательно, напряжение отстает по фазе от тока на 90° = (рис. 11.66).

Если уравнение (11.17) разделить на = 1,41, то получится равенство или

Это равенство (11.19а) и является математическим выражением закона Ома для цепи переменного тока с емкостью.

Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:

Когда закон Ома для цепи с конденсатором можно записать:

Емкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему (рис. 11,5а).

Реактивная мощность в цепи с конденсатором

Если в цепи конденсатора емкостью = 0 (рис. 11.6а) проходит ток i, изменяющийся по синусоидальному закону:

Напряжение и, приложенное к этому конденсатору (рис. 11.6), будет равно

Мгновенная мощность в цепи с конденсатором

Мощность в цепи с конденсатором, подключенным к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой (рис. 11.6в).

Следовательно, активная мощность Р в рассматриваемой цепи 1С. 11.6а), равная среднему значению мгновенной мощности за период, имеет нулевое значение, Р= 0.

Это следует и из временной диаграммы (рис. 11.6в). На временной диаграмме видно, что изменение мгновенной мощности р по синусоидальному закону происходит с двойной частотой: 2-ю и 4-ю четверти периода мощность (энергия) источника накапливается в электрическом поле конденсатора.

Максимальное значение энергии, накапливаемой в электрическом поле конденсатора, равно

В 1-ю и 3-ю четверти периода эта мощность (энергия) из электрического поля конденсатора возвращается к источнику.

Таким образом, в цепи переменного тока с конденсатором происходит колебание мощности (энергии) между источником и электрическим полем конденсатора. Такая колеблющаяся, но не потребляемая мощность называется реактивной мощностью.

Величина реактивной мощности в цепи конденсатора определяется выражением

Из временных диаграмм (рис. 11.4в, 11.6в) видно, что реактивная мощность в цепи конденсатора изменяется в противофазе с реактивной мощностью в цепи с идеальной катушкой. Отсюда и знак «минус» в уравнении (11.21) — аналитическом выражении мгновенной мощности в цепи с конденсатором.

Так как реактивная мощность Qc имеет место в цепи с емкостным сопротивлением, то это емкостное сопротивление считается реактивным сопротивлением Х емкостного характера (Хс).

Расчет линейных электрических цепей синусоидального тока

Расчет электрических цепей синусоидального тока производится преимущественно с помощью векторных диаграмм. В нашей главе рассматривается расчет неразветвленных цепей синусоидального тока, содержащих активное сопротивление R, активность L и емкость С в различных сочетаниях.

Цепь с активным сопротивлением и индуктивностью

Если по цепи с реальной катушкой, обладающей активным сопротивлением R и индуктивностью L, проходит синусоидальный ток (рис. 12.1а), то этот ток создает падение напряжения на активном сопротивлении проводников катушки и индуктивном сопротивлении катушки

Следовательно, по второму закону Кирхгофа, для мгновенных значений, приложенное к реальной катушке напряжение можно записать

Это равенство справедливо для неразветвленной цепи синусоидального тока с последовательно включенными активным сопротивлением R и индуктивным сопротивлением XL (рис. 12.16).

Активное напряжение (рис. 11.16) совпадет по фазе с током и может быть записано . Индуктивное напряжение опережает ток на угол 90° = .

Мгновенное значение напряжения, приложенного к цепи, определяется алгебраической суммой мгновенных значений напряжений согласно (12.1). А действующее значение этого напряжения U определяется геометрической суммой их действующих значений

Это равенство лежит в основе построения векторной диаграммы (рис. 12.1 в).

Из векторной диаграммы (рис. 12.1 в) видно, что напряжение U, приложенное к реальной катушке, опережает по фазе ток на угол ф. Мгновенное значение этого напряжения может быть записано:

где ф — это международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.

Воспользовавшись теоремой Пифагора для определения гипотенузы прямоугольного треугольника, по векторной диаграмме (рис. 12.1 в) определяется напряжение

Равенство (12.4) является математическим выражением закона Ома для цепи синусоидального тока с активным R и индуктивным XL сопротивлениями в неразветвленной цепи.

Знаменатель этого равенства является сопротивлением этой цепи, которое называется полным, или кажущимся, сопротивлением цепи синусоидального тока. Обозначается кажущееся (полное) сопротивление любой цепи переменного тока буквой Z:

где Zk — полное, или кажущееся, сопротивление реальной катушки.

Тогда закон Ома для любой цепи переменного тока в общем виде можно записать

где Z — кажущееся сопротивление этой цепи.

Треугольники напряжений, сопротивлений, мощностей

Треугольник, все стороны которого изображены векторами напряжений, называется треугольником напряжений. Пользуясь векторной диаграммой для неразветвленной цепи с активным и индуктивным сопротивлениями (рис. 12.1в), выделяем треугольник напряжений (рис. 12.2а).

Связь между напряжениями в данной цепи можно рассматривать как соотношение между сторонами и углами прямоугольного треугольника:

Если все стороны треугольника напряжений разделить на ве-1ину тока в цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают сопротивления цепи, т. е. получится треугольник составлений (рис. 12.16). Сопротивления не являются векторными величинами. Из треугольника сопротивлений можно определить:

Обычно тригометрические функции угла ф определяются из треугольника сопротивлений отношением (12.9).

Если все стороны треугольника напряжений умножить на величину тока цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают мощности цепи, т.е. получится треугольник мощностей (рис. 12.2в).

Произведение напряжения и тока цепи характеризует полную мощность цепи

которая измеряется в вольт-амперах, т.е.

Однако потребляется в цепи только часть полной мощности — активная мощность

где cos ф показывает, какая часть полной мощности потребляется в цепи, поэтому cos ф называют коэффициентом мощности:

Полная мощность цепи S называется кажущейся. Из того же треугольника мощностей (рис. 12.2в) записать:

Построив треугольники напряжений, сопротивлений и мощностей для любой цепи синусоидального тока, по выражениям (12.7)—(12.14) можно рассчитать параметры этой цепи.

Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно включенными активным сопротивлением R и емкостью С протекает синусоидальный ток , то он создает падение напряжения на активном сопротивлении и на емкостном сопротивлении . Векторная диаграмма для этой цепи изображена на рис. 12.36.

Напряжение цепи изменяется, как и ток, по синусоидальному закону и отстает по фазе от тока на угол ф

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Цепи синусоидального тока

ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Переменным током называют ток, изменяющийся во времени.

Значение тока в любой данный момент времени называют мгновенным и обозначают строчной (малой) буквой i. Для одного из двух возможных направлений тока через поперечное сечение проводника мгновенное значение тока i считают положительным, а для противоположного направления — отрицательным. Направление тока, для которого его мгновенные значения положительны, называют положительным направлением тока. Ток определен, если известна его зависимость от времени i=F(t) и указано положительное направление тока.

Токи, мгновенные значения которых повторяются через равные промежутки времени в той же самой последовательности, называют периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т. Для периодического тока

Величина, обратная периоду, называется частотой f=1/Т. Частота измеряется в герцах. Частота равна 1 Гц, если период равен 1 с, т. е. 1 Гц=1 с-1.

Постоянный ток можно рассматривать как частный случай периодического тока, период изменения которого бесконечно велик, т. е. частота равна нулю.

Мгновенное значение синусоидального тока определяется выражением

, (6.1)

где Im — максимальное значение или амплитуда тока. Аргумент синуса называется фазой. Угол y равен фазе в начальный момент времени (t=0) и поэтому называется начальной фазой. Фаза с течением времени непрерывно растет. После ее увеличения на 2p весь цикл изменения тока повторяется. Поэтому, когда говорят о фазе для какого-либо момента времени, обычно отбрасывают целое число 2p так, чтобы значение фазы находилось в пределах ±p или в пределах от 0 до 2p. В течение периода Т фаза увеличивается на 2p. Величина 2p/Т показывает скорость изменения фазы и обозначается буквой w. Принимая во внимание, что f=1/T, можно написать

Это выражение, связывающее w и f, послужило основанием называть w угловой частотой. Измеряется w числом радианов, на которое увеличивается фаза в секунду. Так, например, при f=50 Гц имеем w»314 рад/с. Введя в (6.1) обозначение со для угловой частоты, получим

На рис. 6.3 построен график синусоидальных токов одинаковой частоты, но с различными амплитудами и начальными фазами:

По оси абсцисс отложены время t и пропорциональная времени величина wt.

Начальная фаза отсчитывается всегда от момента, соответствующего началу синусоиды (нулевое значение синусоидальной величины при переходе ее от отрицательных к положительным значениям), до момента начала отсчета времени t=0 (начало координат). При y1>0 начало синусоиды тока i1 сдвинуто влево, а при y2 0, т. е. ток i1 опережает по фазе ток i2 на угол y1‑y2, или, что то же самое, ток i2 — отстает по фазе от тока i1 на угол y1‑y2.

Если у синусоидальных функций одной и той же частоты одинаковые начальные фазы, то говорят, что они совпадают по фазе, если разность их фаз равна ±p, то говорят, что они противоположны по фазе, и, наконец, если разность их фаз равна ±p/2, то говорят, что они находятся в квадратуре.

ДЕЙСТВУЮЩИЕ ТОК, ЭДС И НАПРЯЖЕНИЕ

Для суждения о периодическом токе вводится понятие о среднем квадратичном значении тока за период, которое называется действующим значением тока, или, короче, действующим током:

(6.3)

За один период переменного тока в проводнике с сопротивлением r выделяется тепловая энергия:

Отсюда следует, что действующий ток численно равен такому постоянному току, при котором за один период в проводнике с тем же сопротивлением выделяется такое же количество тепла, как и при переменном.

Установим связь между действующим значением и амплитудой Im синусоидального тока:

. (6.4)

Среднеквадратичные значения любых других периодических величин за период тоже называются действующими. Так, например, действующие ЭДС и напряжение

В частности, для синусоидальных ЭДС и напряжения

; .

Если речь идет о периодических напряжениях и токах, обычно подразумевают действующие напряжения и токи и ради краткости просто говорят: напряжение столько-то вольт, ток столько-то ампер.

ИЗОБРАЖЕНИЕ СИНУСОИДАЛЬНЫХ ФУНКЦИЙ ВРЕМЕНИ ВЕКТОРАМИ И КОМПЛЕКСНЫМИ ЧИСЛАМИ

Расчет цепей переменного тока облегчается, если изображать синусоидально изменяющиеся токи, напряжения, ЭДС и т. д. векторами или комплексными числами.

Предположим, что некоторая величина (ток, напряжение, магнитный поток и т. п.) изменяется по синусоидальному закону:

Возьмем прямоугольную систему осей МОN (рис. 6.4). Расположим под углом y относительно горизонтальной оси ОМ вектор Vm, длина которого в выбранном масштабе равна амплитуде Vm (положительные углы y откладываются против, а отрицательные — по часовой стрелке). Представим себе, что вектор Vm с момента t=0 начинает вращаться вокруг начала координат О против часовой стрелки с постоянной угловой скоростью, равной угловой частоте w. В момент времени t вектор составит с осью ОМ угол wt+y. Его проекция на ось N¢N равна в выбранном масштабе мгновенному значению рассматриваемой величины v.

Мгновенные значения v как проекции вектора на ось N¢N можно получить и другим путем, оставляя вектор Vm неподвижным и вращая, начиная с момента t=0, ось N¢N по часовой стрелке с угловой скоростью w. В этом случае вращающуюся ось N¢N называют линией времени.

Таким образом, между мгновенным значением v и вектором Vm можно установить однозначную связь. На этом основании вектор Vm называют вектором, изображающим синусоидальную функцию времени, или, кратко, вектором величины v. Так, например, говорят о векторах напряжения, ЭДС, тока, магнитного потока и т. д. Конечно, эти векторы имеют смысл, отличный от смысла векторов, определяющих физические величины в пространстве, к которым относятся векторы скорости, силы, ускорения, напряженности электрического поля и т. п.

Векторы, изображающие синусоидальные функции времени, будем обозначать подчеркнутыми прописными (большими) буквами. Совокупность векторов, изображающих рассматриваемые синусоидальные функции времени, называется векторной диаграммой.

Если считать оси ММ‘ и NN¢ осями действительных и мнимых величин на комплексной плоскости, то вектор Vm соответствует комплексному числу, модуль которого равен Vm и аргумент — углу y. Это комплексное число Vm называется комплексной амплитудой рассматриваемой величины.

Комплексную амплитуду можно записать в полярной, показательной, тригонометрической и алгебраической формах:

, (6.5)

где .

Если вектор Vm, начиная с момента времени t=0, вращается против часовой стрелки с угловой скоростью w, то ему соответствует комплексная функция времени, которая называется комплексной мгновенной величиной:

.

Значение ее мнимой части равно рассматриваемой синусоидально изменяющейся величине v.

Таким образом, величина v и ее изображение — комплексная амплитуда — однозначно связаны следующим равенством:

, (6.6)

где символ Im обозначает, мнимую часть комплексной функции времени, записанной в квадратных скобках.

Метод расчета цепей синусоидального тока, основанный на изображении гармонических функций времени комплексными числами, называется методом комплексных величин, методом комплексных амплитуд или комплексным методом расчета.

Комплексный метод был введен в электротехнику американским ученым и инженером .

Пример. Написать комплексную амплитуду тока i=10sin(wt‑p/6) А.

Решение. Комплексная амплитуда Im=10Ð-p/6 А.

Заданный ток равен мнимой части комплексной функции времени

Пример. Комплексная амплитуда напряжения Um=‑100+j100 В, частота f=1 кГц. Написать выражение для мгновенного напряжения.

Решение. Угловая частота w=2pf=2p×103=6280 рад/с, амплитуда ; так как действительная часть комплексной амплитуды отрицательная, а мнимая часть положительная, то вектор Um находится во второй четверти и, следовательно, y=Зp/4.

Таким образом, мгновенное значение напряжения

.

СЛОЖЕНИЕ СИНУСОИДАЛЬНЫХ ФУНКЦИЙ ВРЕМЕНИ

При исследовании цепей синусоидального тока приходится алгебраически суммировать гармонические функции времени одинаковой частоты, но с различными амплитудами и с различными начальными фазами. Непосредственное суммирование гармонических функций времени связано с трудоемкими и громоздкими тригонометрическими преобразованиями. Значительно проще эта задача решается графически при помощи векторной диаграммы или аналитически путем суммирования комплексных амплитуд.

Пусть требуется найти сумму двух гармонических функций времени v1=V1тsin(wt+y1) и v2=V2тsin(wt+y2).

Сначала рассмотрим решение, выполняемое при помощи векторной диаграммы. Отложим векторы V1т=V1тÐy1 и V2т=V2тÐy2 и графически определим вектор Vт=VтÐy, равный геометрической сумме векторов V1т и V2т (рис. 6.5). Эта векторная диаграмма построена для случая, когда y1>0 и y2 0. Синусоида ur совпадает по фазе с синусоидой тока, а синусоиды uL, и uC сдвинуты относительно синусоиды тока на угол p/2 соответственно влево (опережение) и вправо (отставание). Таким образом, напряжения на индуктивности и на емкости сдвинуты относительно друг друга по фазе на угол p (находятся в противофазе).

Ординаты кривой напряжения

согласно (6.13) равны алгебраической сумме ординат кривых ur, uL, и uC.

Определение напряжения u сводится к вычислению амплитуды Um и начальной фазы yu, которые могут быть найдены непосредственным суммированием трех синусоидальных функций времени ur, uL, и uC с последующими тригонометрическими преобразованиями. Однако, как указывалось, проще всего задача решается комплексным методом.

Запишем комплексный ток и комплексные напряжения на основании выражений для их мгновенных значений:

; (6.17)

; (6.18)

; (6.19)

; (6.20)

. (6.21)

Сопоставив выражения для мгновенных напряжений uL, и uC (6.15), (6.16) с комплексными напряжениями UL и UC (6.19), (6.20), можно установить простое правило перехода от производной и интеграла синусоидальной функции времени к изображающим их комплексным величинам: синусоидальная функция заменяется изображающей ее комплексной величиной, дифференцирование заменяется умножением на jw а интегрирование — делением на jw.

Сумме синусоидальных напряжений (6.13) соответствует сумма изображающих их векторов или комплексных действующих напряжений:

Это соотношение представляет собой уравнение по второму закону Кирхгофа, записанное в комплексной или векторной форме; оно представлено на векторной диаграмме (рис. 6.10). Напряжение ur совпадает по фазе с током i, поэтому вектор Ur направлен одинаково с вектором I. Напряжение uL опережает по фазе i на p/2, поэтому вектор UL сдвинут относительно вектора I на угол p/2 вперед (против часовой стрелки). Напряжение uC отстает по фазе от i на p/2, поэтому вектор UC сдвинут относительно вектора I на угол p/2 назад (по часовой стрелке).

Соображения о взаимном расположении векторов напряжения и тока непосредственно следует и из записи выражений комплексных напряжений Ur, UL, UC. Вектор Ur (6.18) получается умножением I на действительную величину r. Аргумент комплексной величины rI такой же, как и комплексного тока I, поэтому направление вектора Ur совпадает с направлением вектора I. Вектор UL (6.19) получается умножением I на jwL. Умножение тока I на действительную величину wL не изменяет аргумента, а умножение на jjp/2 увеличивает аргумент на p/2. Следовательно, вектор UL повернут относительно вектора I на угол p/2 «вперед». Вектор UC (6.20) получается делением I на jwС. Деление комплексной величины на wС не изменяет аргумента, а деление на j, что равносильно умножению на ‑j=е-jp/2, уменьшает аргумент на p/2. Следовательно, вектор UC повернут относительно вектора I на угол p/2 «назад».

Так как умножение и деление вектора на j приводят к повороту вектора на p/2 соответственно «вперед» и «назад», то множитель j называют оператором поворота на p/2.

Сложив векторы Ur, UL и UC, получим вектор U. Его длина определяет действующее напряжение , а положение относительно координатных осей — начальную фазу yu.

Решим ту же задачу аналитически. Теперь уравнение (6.22) будем рассматривать как соотношение между комплексными числами. Подставив в него значения комплексных напряжений, получим

Это соотношение между комплексным напряжением и током называют законом Ома в комплексной форме. Записав комплексные величины в показательной форме, получим

, (6.236)

. (6.23в)

Так как и , то .

Таким образом, амплитуда Um и начальная фаза yu напряжения на выводах контура определены и можно записать выражение для мгновенного напряжения:

В заключение отметим, что уравнение для комплексных токов и напряжений и векторные диаграммы взаимно связаны. Уравнения можно рассматривать как запись геометрических суммирований векторов, выполняемых на векторной диаграмме, и, наоборот, векторную диаграмму можно рассматривать как графическое представление соотношений между комплексными величинами в уравнении.

Отношение комплексного напряжения к комплексному току называется комплексным сопротивлением:

где z=U/I=Um/Im — отношение действующего или амплитудного напряжения соответственно к действующему или амплитудному току называется полным сопротивлением. Полное сопротивление равно модулю комплексного сопротивления. Аргумент комплексного сопротивления равен разности фаз напряжения и тока, т. е. j=yu—yi. Комплексное сопротивление можно представить в виде

где r=zcosj — действительная часть комплексного сопротивления, называется активным сопротивлением; x=zsinj — значение мнимой части комплексного сопротивления, называется реактивным сопротивлением.

. (6.26)

Из (6.23а) следует, что для последовательного контура (см. рис. 6.8) комплексное сопротивление

причем реактивное сопротивление

называются соответственно индуктивным и емкостным сопротивлениями.

Из (6.15) и (6.19) видно, что индуктивное сопротивление связывает между собой амплитуды или действующие значения напряжения на индуктивности и тока:

Индуктивное сопротивление прямо пропорционально частоте тока. Это объясняется тем, что напряжение на индуктивном элементе пропорционально скорости изменения тока: uL=Ldi/dt.

Емкостное сопротивление, как следует из (6.16) и (6.20), связывает между собой амплитуды или действующие значения напряжения на емкости и тока:

Емкостное сопротивление обратно пропорционально частоте тока. Эту зависимость от частоты легко пояснить, если считать заданным напряжение на емкостном элементе, а искомой величиной ток: i=dq/dt=CduC/dt. Ток прямо пропорционален скорости изменения напряжения на емкостном элементе, и, следовательно, емкостное сопротивление обратно пропорционально частоте напряжения.

Напряжения на последовательно соединенных индуктивности и емкости противоположны по фазе; поэтому в (6.27) для реактивного сопротивления х сопротивления xL и xC входят с различными знаками. Напряжения на индуктивности и на емкости сдвинуты по фазе относительно напряжения на сопротивлении соответственно на p/2 и —p/2. Поэтому эти сопротивления входят в Z как r, jxL и —jxC.

Следует отметить, что индуктивное и емкостное сопротивления являются величинами арифметическими ‑ положительными, а реактивное сопротивление x=xLxCвеличина алгебраическая и может быть как больше, так и меньше нуля.

Для ветви, содержащей только индуктивность, реактивное сопротивление x равно индуктивному сопротивлению xL, а реактивное сопротивление x ветви, содержащей только емкость, равно емкостному сопротивлению, взятому со знаком минус, т. е. —xC.

Заметим также, что для ветвей, каждая из которых содержит только сопротивление r, только индуктивность L или только емкость С, комплексные сопротивления соответственно равны:

Если ветвь содержит несколько последовательно соединенных резистивных, индуктивных и емкостных элементов, то при вычислении сопротивления и тока их можно заменить тремя элементами .

РАЗНОСТЬ ФАЗ НАПРЯЖЕНИЯ И ТОКА

Условимся под разностью фаз j напряжения и тока всегда понимать разность начальных фаз напряжения yu и тока yi < (а не наоборот):

Поэтому на векторной диаграмме угол j отсчитывается в направлении от вектора I к вектору U (рис. 6.10). Именно при таком определении разности фаз угол j равен аргументу комплексного сопротивления. Угол j положителен при отстающем токе (yu>yi) и отрицателен при опережающем токе (yu xC имеем x=xLxC>0 и ток отстает по фазе от напряжения, j=arctg(x/r)>0. При xL=xC имеем x=0, j=0, z=r, ток совпадает по фазе с напряжением, rLC-цепь в целом проявляет себя как активное сопротивление. Это случай так называемого резонанса в последовательном контуре. Наконец, при xL xC как последовательное соединение сопротивления и индуктивности (r и xL=xLxC), при xL=xC как сопротивление r и при xL IC показана на рис. 6.13.

Подставив выражения комплексных токов в уравнение первого закона Кирхгофа, найдем, что

От значения аргумента комплексной величины в квадратных скобках, на которую умножается комплексное напряжение, зависит разность фаз напряжения и тока. Так как под разностью фаз понимается значение j=yu—yi и, следовательно, yi=yu—j, то аргумент комплексной величины в квадратных скобках следует обозначить — j:

(6.30)

где , или .

Из (6.30) следует, что

.

На основании этих данных

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z — величина, обратная полному сопротивлению, называется полной проводимостью.

Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где g=ycosj — действительная часть комплексной проводимости, называется активной проводимостью; b=ysinj — значение мнимой части комплексной проводимости, называется реактивной проводимостью;

. (6.32)

Из (6.30) и (6.29) следует, что для схемы, представленной на рис. 6.12, комплексная проводимость

и называются соответственно активной, индуктивной и емкостной проводимостями.

Индуктивная bL, и емкостная bC проводимости — арифметические величины, а реактивная проводимость b — алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости bL а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. —bC.

Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы рис. 6.12 на рис. 6.14 представлены векторные диаграммы для трех случаев, а именно bL>bC, bL=bC и bL 0, т. е. если x — индуктивное сопротивление. Треугольник, образованный векторами U, Ua и Up со сторонами, пропорциональными z, r и |x|, называется треугольником напряжений. Подобный ему треугольник, стороны которого в произвольно выбранном масштабе равны сопротивлениям z, r и |x|, называется треугольником сопротивлений. Из треугольника напряжений следует, что

.

Входной комплексной проводимости Y=gjb соответствует эквивалентная схема двухполюсника, состоящая из параллельного соединения проводимостей g и —jb. Последняя в зависимости от знака либо индуктивная, либо емкостная. Поэтому на эквивалентной схеме (рис. 6.16,6) проводимость b, показана условно прямоугольником. Ток на входе двухполюсника можно разложить на составляющие :

где Ia=gU — составляющая, совпадающая по фазе с напряжением, называется активной составляющей тока Ip=—jbU, — составляющая, сдвинутая по фазе относительно напряжения на угол p/2, называется реактивной составляющей тока.

Составляющие Ia и Ip можно рассматривать как токи в элементах g и —jb эквивалентной схемы.

Треугольник, образованный векторами I, Ia и Ip, со сторонами, пропорциональными y, g, |b|, называется треугольником токов. Подобный ему треугольник, стороны которого в произвольно выбранном масштабе равны проводимостям y, g и |b |, называется треугольником проводимостей.

Из треугольника токов имеем

Пример. Цепь состоит из конденсатора емкостью С=10 мкФ и резистора с сопротивлением r=100 Ом, включенных параллельно. Определить, каковы должны быть емкость конденсатора и сопротивление резистора, чтобы при их последовательном соединении получилась цепь, эквивалентная данной при частоте w=103 рад/с.

Эквивалентная цепь должна иметь такие же сопротивления. Таким образом, искомое сопротивление резистора 50 Ом, а емкость конденсатора С=—1/wx=20 мкФ.

Пример. Напряжение и ток на входе пассивного двухполюсника (см. рис. 6.15) u=100sin(314t‑15°) В, i=10sin(314t+45°) А.

Определить параметры двух эквивалентных схем двухполюсника, активные и реактивные составляющие напряжения и тока.

Рассмотрим энергетические соотношения в цепи синусоидального тока.

Положим, что за элементарный промежуток времени dt через поперечное сечение прохода в направлении, принятом за положительное для тока i (см. рис. 6.15), проходит электрический заряд dq. Перемещение заряда в направлении, совпадающем с положительным направлением ЭДС источника, сопровождается элементарной работой dA=edq источника. Такая электромагнитная энергия отдается источником во внешнюю цепь и затрачивается на работу dA=udq по перемещению заряда dq в положительном направлении напряжения и через пассивный двухполюсник.

Мгновенная мощность, производимая и отдаваемая источником ЭДС и получаемая двухполюсником, равна скорости совершения работы в данный момент времени:

Напряжение и ток на входе пассивного двухполюсника в общем случае сдвинуты по фазе на угол j. Примем начальную фазу напряжения yu=0 и найдем из (6.28) начальную фазу тока yi=—j. При таком условии мгновенные значения напряжения и тока

. (6.37)

Мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, частота которой в 2 раза больше частоты напряжения и тока (рис. 6.17). Мгновенная мощность, получаемая двухполюсником и отдаваемая источником напряжения (ЭДС), положительна, когда у напряжения и u тока i одинаковые знаки, т. е. когда действительные направления напряжения и тока в двухполюснике одинаковы и одинаковы действительные направления ЭДС и тока источника (см. рис. 6.15); она отрицательна, когда у напряжения и тока разные знаки, т. е. когда действительные направления напряжения и тока в двухполюснике противоположны и противоположны действительные направления ЭДС и тока источника.

Действительные направления и и I в течение отдельных интервалов времени показаны на рис. 6.17.

Когда мгновенная мощность отрицательна, энергия поступает не в двухполюсник, а возвращается из двухполюсника источнику ЭДС. Такой возврат энергии источнику питания возможен, так как энергия периодически запасается в магнитных и электрических полях элементов цепи, входящих в состав двухполюсника. Энергия, отдаваемая источником и поступающая в двухполюсник в течение времени t, равна . На графике она соответствует площади, ограниченной кривой p и осью абсцисс на интервале времени t. Знаками плюс и минус отмечены заштрихованные площади, соответствующие энергии, поступающей в двухполюсник и возвращаемой источнику.

Если двухполюсник состоит только из резистивных элементов, энергия накопляться в нем не может. В этом случае нет сдвига фаз между напряжением и током (j=0). Знаки тока i и напряжения и в любой момент времени одинаковы и p³0 (см. далее рис. 6.18, а), и нет таких моментов времени, когда энергия возвращалась бы из двухполюсника источнику питания.

Среднее значение мгновенной мощности за период называется активной мощностью, или иногда просто мощностью, и, как следует из (6.37),

. (6.38)

Активная мощность, получаемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник не потреблял бы энергию, а генерировал ее), поэтому всегда cosj³0, т. е. на входе пассивного двухполюсника —p/2 0) и отрицательна при опережающем токе (j 0, то в данный момент времени энергия передается от двухполюсника А1 к двухполюснику А2. Если Р>0, то за каждый период Т двухполюсник А2 получает, а двухполюсник А1 отдает энергию, равную РТ. При Q>0 двухполюсник А1 отдает, а двухполюсник А2 получает реактивную энергию. При p 0 и Q 0. Таким образом, активная мощность передается от А2 к А1 а реактивная — от А1 к А2. Ясно, что направление передачи энергии может быть установлено по осциллограммам тока и напряжения только в том случае, если известна полярность выводов осциллографа и схема его подключения к цепи.

Активная мощность измеряется ваттметром, который имеет две цепи, или, как принято говорить, две обмотки — напряжения и тока. Два вывода, один — обмотки напряжения и один — обмотки тока, обозначают одинаковыми значками, обычно звездочками (рис. 6.21, а).

Ваттметр устроен так, что измеряет значение

где U и I — действующие напряжение и ток, подведенные к ваттметру, а ÐU,I — угол сдвига фаз между ними, который соответствует одинаковым положительным направлениям U и I относительно выводов, отмеченных звездочкой (например, на рис. 6.21, а — от выводов, отмеченных звездочкой, к выводам, не отмеченным звездочкой). Стрелка ваттметра отклоняется по шкале, если |ÐU,I|

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с -1 )

(3.3)

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).

Среднее и действующее значения синусоидально изменяющейся величины.

Под средним значением синусоидально изменяющей­ся величины понимают ее среднее значение за полпериода. Среднее значение тока

(3.4)

т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,

Eср = 2Em/ ; Uср = 2Um/ .

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

(3.5)

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Большинство измерительных приборов показывают действующее значение измеряемой величины.

Коэффициент амплитуды кa это отношение амплитуды периодически изменяющейся функции к ее действующему значению. Для синусоидального тока

(3.6)

Под коэффициентом формы кфпонимают отношение действующего значения периодически изменяющейся функции к ее среднему за полпе­риода значению. Для синусоидального тока

(3.7)

Сложение и вычитание синусоидальных функций времени на комплексной плоскости. Векторная диаграмма.

Положим, что необходимо сложить два тока (i1 и i2) одинаковой частоты. Сумма их дает некоторый ток той же частоты:

Требуется найти амплитуду Iт и начальную фазу ψ тока i. С этой целью ток i1 изобразим на комплексной плоскости (рис. 3.4) вектором = Iе j ψ1 , а ток i2 — вектором = Iе j ψ2 . Геометрическая сумма векторов и I даст комплексную амплитуду суммарного тока Iт = Iт e — jψ 2 . Амплитуда тока Iт определяется длиной суммарного вектора, а начальная фаза ψ — углом, образованным этим вектором и осью + 1.

Для определения разности двух токов (ЭДС, напряжений) следует на комплексной плоскости произвести не сложение, а вычитание соответствующих векторов.

Обратим внимание на то, что если бы векторы , ,Iт стали вращаться вокруг начала координат с угловой скоростью ω, то взаимное расположение векторов относительно друг друга осталось бы без изменений.

Векторной диаграммойназывают совокупность векторов на комплексной плоскости, изображающих синусоидально изменяющиеся функции времени одной и той же частоты и построенных с соблюдением правильной ориентации их относительно друг друга по фазе. Пример на рис. 3.4.

Мгновенная мощность.

Протекание синусоидальных токов по участкам электрической цепи сопровождается потреблением энергии от источников. Скорость поступления энергии характеризуется мощностью. Под мгновенным значением мощности, или под мгновенной мощностью, понимают произведение мгновенного значения напряжения и на участке цепи на мгновенное значение тока i, протекающего по этому участку:

(3.14)

где р — функция времени.

Перед тем как приступить к изучению основ расчета сложных цепей синусоидального тока, рассмотрим соотношения между токами и напряжениями в простейших цепях, векторные диаграммы для них и кривые мгновенных значений различных величин. Элементами реальных цепей синусоидального тока являются резисторы, индуктивные катушки и конденсаторы. Протеканию синусоидального тока оказывают сопротивление резистивные элементы (резисторы) — в них выделяется энергия в виде теплоты — и реактивные элементы (индуктивные катушки и конденсаторы) — они то запасают энергию в магнитном (электрическом) поле, то отдают ее. Рассмотрим поведение этих элементов.

Комплексная проводимость.

Под комплексной проводимостью Y понимают величину, обратную комплексному сопротивлению Z:

(3.37)

Единица комплексной проводимости — См (Ом -1 ). Действительную часть ее обозначают через g, мнимую — через b.

(3.38)

Если X положительно, то и b положительно. При X отрицательном b также отрицательно.

При использовании комплексной проводимости закон Ома (3.35) запи-сывают так:

(3.39)

где Ia — активная составляющая тока;Ir реактивная составляющая ; тока; U — напряжение на участке цепи, сопротивление которого равно Z.

Определение дуальной цепи.

Две электрические цепи называют дуальными, если закон изменения контурных токов в одной из них подобен закону изменения узловых потенциалов в другой. Исходную и дуальную ей схемы называют взаимно обратными.

В качестве простейшего примера на рис. 3.32изображены две дуальные цепи.

Схема на рис. 3.32, а состоит из источника ЭДС Е и последовательно с ним включенных активного, индуктивного и емкостного элементов (R, L, С). Схема на рис. 3.32б состоит из источника тока J3 и трех параллельных ветвей. Первая ветвь содержит активную проводимость gэ вторая — емкость Сэ, третья — индуктивность Zэ.

Для того чтобы показать, какого рода соответствие имеет место в дуальных цепях, составим для схемы на рис. 3.32, а уравнение по методу контурных токов:

(3.85)

а для схемы на рис. 3.32б — по методу узловых потенциалов, обозначив потенциал точки а через φа, положив равным нулю потенциал второго узла:

(3.86)

Если параметры gэ, Lэ. Сэ, схемы (рис. 3.32б) согласовать с параметрами R, L, С схемы (рис. 3.32а) таким образом, что

(3.87)

где к — некоторое произвольное число (масштабный множитель преоб-разования), Ом 2 , то

(3.88)

С учетом равенства (3.88) перепишем уравнение (3.86) следующим об-разом:

(3.89)

Из сопоставления уравнений (3.85) и (3.89) следует, что если ток Jэ источника тока в схеме на рис. 3.32б изменяется с той же угловой частотой, что и ЭДС Е в схеме на рис. 3.32а, и численно равен E , а параметры обеих схем согласованы в соответствии с уравнением (3.87), то при к = 1Ом 2 . закон изменения во времени потенциала φ0 в схеме на рис. 3.32б совпадет с законом изменения во времени тока I в схеме на рис. 3.32а.

Если свойства какой-либо из схем изучены, то они полностью могут быть перенесены на дуальную ей схему.

Между входным сопротивлением Zисх исходного двухполюсника и входной проводимостью Yдуал дуального ему двухполюсника существует соотношение Zисх =k Yдуал

Из (3.88) получаем соотношение между частотной характеристикой чисто реактивного исходного двухполюсника Хисх(ω) и частотной характеристикой дуального ему тоже чисто реактивного двухполюсника b дуал (ω). Каждому элементу исходной схемы (схемы с источниками ЭДС E и параметрами R, L, С) отвечает свой элемент эквивалентной дуальной схемы (схемы с источниками тока J3 и параметрами gэ, Сэ, Lэ).

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с -1 )

(3.3)

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).


источники:

http://pandia.ru/text/78/507/15151.php

http://zdamsam.ru/a12306.html