Уравнение модуль разностей х 6 равен 2

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \( |x-a| \) — это расстояние на числовой прямой между точками x и a: \( |x-a| = \rho (x;\; a) \). Например, для решения уравнения \( |x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \( x_1=1 \) и \( x_2=5 \).

Решая неравенство \( |2x+7| 0 \), то уравнение \( |f(x)|=c \) равносильно совокупности уравнений: \( \left[\begin f(x)=c \\ f(x)=-c \end\right. \)
2) Если \( c > 0 \), то неравенство \( |f(x)| c \) равносильно совокупности неравенств: \( \left[\begin f(x) c \end\right. \)
4) Если обе части неравенства \( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, \(x_1=-1, \; x_2=3 \).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию \( 2\rho(x; \;2)+ \rho(x; \;-3) =8 \) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка \( M_1(x) \) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка \( M_2(x) \) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство \( |f(x)| |f(x)| \). Отсюда сразу следует, что \( g(x) > 0 \). Воспользуемся тем, что при \( g(x) > 0 \) неравенство \( |f(x)| 0, \\ -g(x) 0 \\ f(x) -g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) > 0 \) обе части неравенства \( |f(x)| 0 \\ (f(x))^2 0 \\ x^2 — 3x + 2 -(2x — x^2) \end\right. \)
Решая эту систему, получаем:
\( \left\<\begin x(x — 2) 0 \\ (x^2 — 3x + 2)^2 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0<,>5 \end\right. \)
Из последней системы находим: \( 0<,>5 g(x) \). Освободиться от знака модуля можно тремя способами.

Первый способ
Если \(f(x) \geqslant 0\), то \( |f(x)| = f(x) \) и заданное неравенство принимает вид \( f(x) > g(x) \).
Если \(f(x) g(x) \).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ f(x) > g(x) \end\right. \) \( \left\<\begin f(x) g(x) \end\right. \)

Второй способ.
Рассмотрим два случая: \( g(x) \geqslant 0, \; g(x) g(x) \) выполняется для всех x из области определения выражения f(x).
Если \( g(x) \geqslant 0 \), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство \( |f(x)| > g(x) \) равносильно совокупности неравенств \( f(x) g(x) \).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
\( \left\<\begin g(x) g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) \geqslant 0 \) неравенство \( |f(x)| > g(x) \) равносильно неравенству \( (|f(x)|)^2 > (g(x))^2 \). Это позволит свести неравенство \( |f(x)| > g(x) \) к совокупности систем:
\( \left\<\begin g(x) (g(x))^2 \end\right. \)

ПРИМЕР 5. Решить неравенство \( |x^2 — 3x + 2| \geqslant 2x — x^2 \)

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin x^2 — 3x + 2 \geqslant 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2 \end\right. \) \( \left\<\begin x^2 — 3x + 2 0 \), то заданное неравенство равносильно совокупности двух неравенств:
\( \left[\begin x^2 — 3x + 2 \geqslant 2x — x^2 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Таким образом, получаем совокупность неравенства и двух систем неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2; \end\right. \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решив первую систему, получим: \( 0 0 \), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ (x^2 — 3x + 2)^2 \geqslant (2x — x^2)^2 \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решая систему, получаем последовательно:
\( \left\<\begin x(x — 2)

Модуль числа знак, свойства, действия, как найти, примеры графиков

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам.

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю:
  2. Если абсолютные значения содержат выражения противоположных значений, они равны:
  3. Значение числа не превышает величину его модуля:
  4. Правило раскрытия при произведении:
  5. Правило, применимое при делении:
  6. При возведении в степень:
  7. Сумма величин:
  8. Двойной модуль:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x| &lt, a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Далее простая арифметика − нужно решить два равенства относительно x.

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке величина будет отрицательной, а на интервале будет положительной.

Разделим интервал на 2 части:

Общим ответом для этих двух неравенств является интервал [−1, + ∞).

Общим ответом для этих двух неравенств является интервал (−∞, –3].

Окончательное решение – объединение ответов отдельных частей:

Ответ: x ∈ (–∞, –3] ∪ [–1, + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Ответ: x1 = 3, x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что не лежит в промежутке .

Ответ: x = 0.

Модуль суммы

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Пример 2.

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Модуль нуля

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Метод интервалов в задачах с модулем

Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.

Для использования метода нужно совершить следующие действия:

  1. Приравнять каждое выражение к нулю.
  2. Найти значения переменных.
  3. Нанести на числовую прямую точки, полученные в пункте 2.
  4. Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
  5. Решить неравенства с полученными знаками.

Пример 1. Решить методом интервалов.

Решение:

Результатом будет сумма всех подходящих интервалов.

Модуль в модуле

Среди примеров часто встречаются уравнения, где нужно найти корни равенств такого вида: ||ax – b| – c| = kx + m.

Лучше всего понять принцип на примере.

Пример 1. Решить

Решение:

Первым делом нужно раскрыть внутренний модуль. Для этого рассматривается два варианта:

В первом случае выражение положительное, а во втором отрицательное. Исходя из этого, получаем:

Нужно упростить два уравнения:

Далее каждое из равенств разделяется еще на два:

Получено четыре результата:

Заключение

Самое важное, что нужно знать: модуль не может быть отрицательным.

Поэтому, если представлено выражение, похожее на |2 – 4x| = –7 стоит помнить, что равенство неверно даже без поисков ответов.

В качестве итогов, напомним все свойства, которые помогут в решении задач:

  • когда положительное число находится внутри модуля, достаточно просто избавиться от него,
  • если есть выражение, нужно его упростить, прежде чем найти абсолютное значение,
  • если равенство содержит две переменные, нужно решать его с помощью системы уравнений и за основу брать методы решения выражений с абсолютными величинами.

Решать равенства и неравенства можно разными способами, но лучше всего использовать графический способ или метод интервалов.

Способы решения уравнений содержащих модуль

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Способы решения уравнений содержащих модуль.

1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме.

Уравнением с одной переменной называют равенство, содержащее переменную.

Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство.

Решить уравнение – значит, найти все его корни или доказать, что корней нет.

Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Свойства модуля

Существует несколько способов решения уравнений с модулем. Рассмотрим каждый из них.

1 СПОСОБ. МЕТОД ПОСЛЕДОВАТЕЛЬНОГО РАСКРЫТИЯ МОДУЛЯ.

Пример 1. Решим уравнение |х-5|=4.
Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.

2 СПОСОБ. МЕТОД ИНТЕРВАЛОВ.


Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1
Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х

Пример 4. |2-х|=2х+1.
Прежде всего, следует установить область допустимых значений. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости этого делать. В этом уравнении в правой части стоит выражение с переменной, которое может быть отрицательным. Таким образом, область допустимых значений – это промежуток [-½; +∞). Найдем нуль выражения, стоящего под знаком модуля: 2-х=0, х=2.
В первом промежутке: 2-х=2х+1, х=⅓. Это значение принадлежит ОДЗ, значит, является корнем уравнения.
Во втором промежутке: -2+х=2х+1, х= -3. -3 не принадлежит ОДЗ, а следовательно не является корнем уравнения. Ответ: ⅓.

3 СПОСОБ. ГРАФИЧЕСКИЙ МЕТОД.

Суть данного метода заключается в использовании графиков функций для нахождения корней уравнения. Этот метод реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Преобразуем уравнение: 1 + |x| = 0.5

Графиком функции являются лучи — биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит, уравнение не имеет решений.

Ответ: нет решений.

Пример 5. |х+1|=2. Построим графики функций у=|х+1| и у=2.
Для построения графика у=|х+1|, построим график функции у=х+1, а затем отразим часть прямой, лежащую ниже оси ОХ. Абсциссы точек пересечения графиков и есть корни уравнения: х 1 =1, х 2 = -3. Ответ: 1; -3.

Пример 6. |х 2 -1|=|4-х 2 |.
Построим графики функций у=|х 2 -1| и у=|4-х 2 |. Для этого построим графики функций у= х 2 -1 и у=4-х 2 , а затем отобразим часть графиков, лежащую ниже оси ОХ.
х 1 ≈1,6; х 2 ≈-1,6.

4 СПОСОБ. МЕТОД РЕШЕНИЯ ПРИ ПОМОЩИ ЗАВИСИМОСТЕЙ МЕЖДУ ЧИСЛАМИ А И В, ИХ МОДУЛЯМИ И КВАДРАТАМИ ЭТИХ ЧИСЕЛ.

| а |=| в | а=в или а=-в;

а 2 2 а=в или а=-в; (1)

| а |=| в | а 2 2 (2)

Пример 7 . Решим уравнение |х 2 -8х+5|=|х 2 -5|.

Учитывая соотношение (1), получим:

х 2 -8х+5= х 2 -5 или х 2 -8х+5= -х 2 +5

Таким образом, корни исходного уравнения: х 1 =1,25; х 2 =0; х 3 =4.

В силу соотношения (2) получаем: (х+3) 2 =(х-5) 2 ;

х 2 +6х+9= х 2 -10х+25;

Пример 9 . (1-3х) 2 =(х-2) 2 .

Учитывая соотношение (2), получаем: |1-3х|=|х-2|, откуда из соотношения (1), имеем:

1-3х=х-2 или 1-3х= -х+2

5 СПОСОБ. ИСПОЛЬЗОВАНИЕ ГЕОМЕТРИЧЕСКОЙ ИНТЕРПРЕТАЦИИ МОДУЛЯ.

Опорная информация: геометрический смысл модуля разности величин – это расстояние между ними. Например, геометрический смысл выражения |х-а| — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки с абсциссой х до двух фиксированных точек с абсциссами 2 и 3. Тогда очевидно, что все точки с абсциссами, принадлежащими отрезку [2;3] обладают требуемым свойством, а точки, расположенные вне этого отрезка – нет. Отсюда, множеством решений уравнения является отрезок [2;3].

Рассуждая аналогично, получим, что разность расстояний до точек с абсциссами 2 и 3 равна 1 только для точек, расположенных на координатной оси правее числа 3. Следовательно, решением данного уравнения будет являться луч, выходящий из точки 3, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений 10 и 11 являются следующие равносильные переходы:

|х-а|+|х-в|=в-а, где в ≥ а а ≤ х ≤ в

|х-а|-|х-в|=в-а, где в ≥ а х ≥ в

Проанализировав представленные способы решения уравнений, содержащих модуль, можно сделать вывод, что ни один из них не является универсальным и для получения наилучших результатов необходимо добиваться того, чтобы ученик овладел возможно большим количеством методов решения, оставляя право выбора решения за собой.

Решим аналитически и графически уравнение |x — 2| = 3.

А) Аналитическое решение

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем

неотрицательно, т. е. x — 2 0, тогда оно «выйдет» из под знака модуля со знаком «плюс» и уравнение примет вид: x — 2 = 3. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x — 2=-3

Таким образом, получаем, либо x — 2 = 3, либо x — 2 = -3. Решая полученные уравнения, находим:

Ответ:

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо .

Одним из способов решения уравнений, содержащих модуль, является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут являться корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль — это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней (удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

Установим, при каких значениях x, модуль равен нулю:

Получим два промежутка, на каждом из которых решим уравнение:

Получим две смешанных системы:

(1) (2)

Решим каждую систему:

(1) (удовлетворяет данному промежутку)

(2)

Ответ:

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции , построим график функции — это прямая, пересекающая ось OX в точке (2; 0), а ось OY в точке а затем часть прямой, лежащую ниже оси OX зеркально отразить в оси OX.

Графиком функции является прямая, параллельная оси OX и проходящая через точку (0; 3) на оси OY.

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=3 пересеклась с графиком функции y=|x – 2| в точках с координатами (-1; 3) и (5; 3), следовательно, решениями уравнения будут абсциссы точек:

Ответ:

Практика обучения учащихся способам решения уравнений, содержащих модули, позволила выявить достоинства и недостатки каждого способа, которые для удобства сведены в таблицу.

Метод последовательного раскрытия модулей

1). Объявляя условие раскрытия одного модуля, можно пользоваться им для раскрытия других модуле тем самым, выигрывая время в решении задачи.

2). Последовательность действий, направленных на поиск ответа, позволяет контролировать и проверять промежуточные результаты.

Необходимость раскрытия модуля, что для некоторых заданий приводит к потере темпа в получении ответа.

Самый эффективный способ, так как сопровождается относительно небольшим объемом работы.

В силу необходимости нахождения концов интервалов может возникнуть ситуация, когда соответствующее уравнение либо вызывает серьезные затруднения при определении корней, либо недоступно ученику на данном этапе обучения.

Данный способ имеет очень широкое применение в других темах школьного курса математики.

Ответ определяется приблизительно.

Метод решения при помощи зависимостей между числами, их модулями и квадратами этих чисел

В некоторых случаях применение данного способа позволяет решать уравнения определенного вида на более раннем этапе.

В некоторых случаях выбор данного способа приводит к громоздкому решению, а иногда решение сводится к уравнению, недоступному для ученика на данном этапе обучения.

Геометрическая интерпретация модуля

Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Применение данного способа ограничивается уравнениями определенного вида.

Проанализировав достоинства и недостатки каждого из указанных способов, можно с уверенностью сказать, что на мотивационном этапе формирования умения решать уравнения с модулем ученикам следует показывать все, доступные на данном этапе обучения способы решения, и, главное, на конкретных примерах доказывать, что первый этап решения – выбор самого эффективного способа.

Рассмотрим пример |(х-1)(х-3)|=х-3.

Это уравнение можно решить тремя способами.
а) последовательное раскрытие модуля:
Если (х-1)(х-3) ≥ 0, то Если (х-1)(х-3) 2 -4х+3=х-3, х 2 -4х+3= -х+3,
х 2 -5х+6=0, х 2 -3х=0,
х 1 =3, х 2 =2. х 1 =0, х 2 =3.
2 – не удовлетворяет условию. 0, 3 — не удовлетворяет условию.
Ответ: 3.
б) метод интервалов: найдем концы интервалов, решив уравнение (х-1)(х-3)=0, откуда х 1 =1, х 2 =3.

(х-1)(х-3)=х-3, -(х-1)(х-3)=х-3, (х-1)(х-3)=х-3,
х 1 =2, х 2 =3. х 1 =0, х 2 =3. х 1 =2, х 2 =3.
2 (-∞; 1), 0 [1; 3). 2 [3; +∞).
3 (-∞; 1).
Ответ: 3.
в) графический метод: для решения уравнения построим в одной системе координат графики функций у=|х 2 -4х+3| и у=-3.
Построим у=|х 2 -4х+3|. Для этого сначала рассмотрим функцию у=х 2 -4х+3, графиком которой является парабола, ветви направлены вверх. Вершина параболы в точке (2; -1). Строим график и отображаем часть параболы, которая лежит ниже оси ОХ в верхнюю полуплоскость. Далее в этой же системе координат строим график у=х-3. Графики функций пересеклись в точке с абсциссой 3.
Ответ: 3.

Таким образом, можно сделать следующий вывод: систематическое использование различных способов для решения уравнений, содержащих абсолютную величину, приводит не только к повышению интереса к математике, повышению творческой активности школьников, но и повышает уверенность детей в собственных силах, так как у них имеется возможность выбора того способа решения, который наиболее эффективен в каждом конкретном случае.

ТЕСТОВЫЕ ЗАДАНИЯ по теме «Решение уравнений с модулем».
1. Какие числа являются решениями уравнения |х+3|= -4?
а) -7; б) -7; 1; в) нет корней; г) 1.
2. Решите уравнение |х+3|=7:
а) 7; б) -7; в) 0; 7; г) 7; -7.
3. Определите координаты точки пересечения графиков функций у=|2х+1| и у=0:
а) (0;0); б) (-0,5;0); в) (0;-0,5); г) (0,5;0).
4. Решите уравнение |х+3|+|х-1|=6:
а) 3; -2; б) 4; -2; в) -4; 2; г) 2; -3.
5. Сколько точек пересечения имеют графики функций у=||5,5х-4|+2| и у=3?
а) 1; б) 2; в) 3; г) 4.
6. Решите уравнение |3х-7|=1-х:
а) 2; 3; б) -2; 3; в) -3; 2; г) -2; -3.
7. Сколько решений имеет уравнение (2,5х-5)2=(0,5х-6)2:
а) 1; б) 2; в) 3; г) 4.

СИСТЕМА КАРТОЧЕК-ЗАДАНИЙ по теме «Решение уравнений с модулем».
1. ЗАДАНИЯ С УКАЗАНИЯМИ ИЛИ АЛГОРИТМИЧЕСКИМИ ПРЕДПИСАНИЯМИ И ОБРАЗОМ ВЫПОЛНЕНИЯ.
УКАЗАНИЯ ОБРАЗЕЦ ЗАДАНИЕ
Если |х-а|+|х-в|=в-а, где в ≥ а, то
а ≤ х ≤ в
|х-1|+|х-2|=1,
1 ≤ х ≤ 2.
Ответ: [1; 2]
а) |х-4|+|х-5|=1,
б) |х|-|х-1|=1,
в) |х-6|+|х-8|=2,
г) |х-0,5|-|х-4,5|=4.

Если |х-а|-|х-в|=в-а, где в ≥ а, то
х ≥ в
|х-1|-|х-2|=1,
х ≥ 2.
Ответ: [2; +∞).

АЛГОРИТМ ОБРАЗЕЦ ЗАДАНИЯ
1. Отметить все нули подмодульных выражений на числовой прямой. Они разобьют числовую прямую на промежутки, в которых все подмодульные выражения имеют постоянный знак.
2. Из каждого промежутка взять произвольное число и подсчетом определить знак подмодульного выражения, по знаку раскрыть модули.
3. Решить уравнения и выбрать решения, принадлежащие данному промежутку. |х+1|+|х+2|=1.
Решение.
Подмодульные выражения х+1 и х+2 обращаются в нуль при х= -1, х= -2.

1) -3 (-∞; -2]
-х-1-х-2=1; х= -2;
-2 (-∞; -2].
2) -1,5 (-2; -1)
-х-1+х+2=1; 1=1; х — любое число из промежутка (-2; -1).
3) 0 [-1; +∞)
х+1+х+2=1; х= -1;
-1 [-1; +∞).
Ответ: [-2; -1].
1) |14-х|+|х+1|=7;
2) |х|-|х+2|=2;
3) |х2-4|=|2х-1|;
4) | х2-6х+5|+|3-х|=3

2. ЗАДАНИЯ «НАЙДИ ОШИБКУ».
1.
Решить уравнение: |х2-8х+5|=| х2-5|.
Решение.
|х2-8х+5|=| х2-5|
х2-8х+5= х2-5, или х2-8х+5=5- х2,
-8х+10=0, 2 х2-8х=0,
х=1,25. х(2х-8)=0,
х=0, или 2х-8=0,
2х=8,
х=0,25.
Ответ: 1,25; 0,25. ВЕРНОЕ РЕШЕНИЕ

2.
Решить уравнение х2-6х+|х-4|+8=0.
Решение.
Если х-4 ≥ 0, то Если х-4 Решить уравнение |х-1|-2|х+3|+х+7=0.
Решение.
Решим уравнение методом интервалов, для этого найдем концы интервалов, решив уравнения
х-1=0 и х+3=0
х=1 х= -3.
-х+1-2(-х-3)+х+7=0; -х+1-2х-6+х+7=0; х-1-2х-6+х+7=0;
2х+14=0; -2х+2=0; 0=0.
х= -7. х=1. х — любое число.
Ответ: х – любое число. ВЕРНОЕ РЕШЕНИЕ

3. ЗАДАНИЯ С СОПУТСТВУЮЩИМИ УКАЗАНИЯМИ И ИНСТРУКЦИЯМИ.
1.
Решить уравнение |х-2|+|2х-7|=3.

Решение.
Решим уравнение методом интервалов.
1) Найдите нули подмодульных выражений, решив уравнения:
х-2=0 и 2х-7=0.
х1=… х2=…
2) Отметьте полученные значения на координатном луче.

3) Решите исходное уравнение на каждом из интервалов, предварительно определив знак подмодульного выражения. Учитывая знак, раскрыть модули.

4) Проверьте, принадлежат ли найденные корни указанным промежуткам.
Ответ: …………………………………………………….

2.
Решить уравнение ||х-3|-х+1|=6.
Решение.
1) Раскройте внешний модуль, используя определение: |а|=а, если а ≥ 0 и
|а|= -а, если а 4. ЗАДАНИЯ С ПРИМЕНЕНИЕМ КЛАССИФИКАЦИИ.
1.
Выпишите уравнения, которые решаются с помощью зависимостей между величинами, их модулями и квадратами величин. Решите эти уравнения.
1) ||х|+3|=3;
2) |х|+|х+4|=х-1;
3) |х+2|=|3-х|;
4) |х+3|+|х-1|=7;
5) (2х-3)2=(3,5х-1)2;
6) |х2-4х+5|=|х2-9|;
7) |11х-7|= -3;
8) |х-2|+|х-1|=1;
9) х2-х-2=|5х-3|;

2.
Выпишите уравнения, которые решаются с использованием геометрической интерпретации модуля. Решите эти уравнения.
1) |х|-|х-8|=2;
2) |х 2 -2х-3|=3х-3;
3) |2х-|2х-|2х-3|||=0;
4) |х-1|-2|х+4|+х+11=0;
5) |х-3|+|х-4|=1;
6) (5х-4) 2 =(2х-1) 2 ;
7) |2,5х-11|= -2;
8) |х-7|-|х-9|=2.

5. ЗАДАНИЯ С ВЫПОЛНЕНИЕМ НЕКОТОРОЙ ЧАСТИ.
1.
Решить уравнение (х 2 -5х+6)2-5•| х 2 -5х+6|+6=0.
Решение.
Пусть | х 2 -5х+6|=t, тогда, учитывая, что (х 2 -5х+6)2=| х 2 -5х+6|2, получим уравнение: t 2 -5t+6=0. Решением этого уравнения являются числа ……. поэтому исходное уравнение равносильно совокупности двух уравнений:
| х 2 -5х+6|=… или | х 2 -5х+6|=…
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………
…………………………………………………………………………………

ПРОВЕРОЧНАЯ РАБОТА по теме «Решение уравнений с модулем»
1. Решите уравнение |х-3|=7.
2. Решите графически уравнение |2х+1|=3.
3. Решите уравнение методом интервалов |х+1|+|х-1|=3.
4. Решите уравнение методом последовательного раскрытия модулей |-х+2|=2х+1.
5. Решите уравнение (2х+3) 2 =(х-1) 2 .
6. Решите уравнение самым удобным способом |х 2 +6х+2|=3|х+2|.
7. При каком значении а уравнение можно решить, используя геометрическую интерпретацию модуля: |х-а|+|х-9|=1?


источники:

http://tvercult.ru/nauka/modul-chisla-znak-svoystva-deystviya-kak-nayti-primeryi-grafikov

http://infourok.ru/sposobi-resheniya-uravneniy-soderzhaschih-modul-398462.html