Уравнение молекулярного рассеяния закон рэлея

Рассеяние света. Закон Рэлея

Процесс рассеяния света заключается в том, что свет, проходящий через вещество, возбуждает колебания электронов в атомах. Колеблющиеся электроны становятся источниками вторичных волн, распространяющихся по всем направлениям.Вторичные волны являются когерентными,поэтому необходимо учесть их взаимную интерференцию.Соответствующий расчет показывает, что в случае однородной среды вторичные волны полностью гасят друг друга во всех направлениях, кроме направления распространения первичной волны. По этой причине перераспределение света по направлениям, то есть рассеяние,отсутствует. В направлении первичной волны вторичные волны, интерферируя с ней, образуют результирующую волну с фазовой скоростью отличной от с. Этим, как отмечалось ранее, объясняются преломление и дисперсия.

Рассеяние света возникает только в неоднородной среде. Световые волны, дифрагируя на неоднородностях среды, дают дифракционную картину, характеризующуюся довольно равномерным распределением интенсивности по всем направлениям. Такую дифракцию на мелких неоднородностях называют рассеянием света.

Среды с явно выраженной оптической неоднородностью носят название мутных сред. К их числу относятся:

1) дымы, то есть взвеси мельчайших твердых частиц в газах;

2) туманы-взвеси в газах мельчайших частиц жидкости;

3) взвеси или суспензии, образованные плавающими в жидкости твердыми частичками;

4) эмульсии, то есть взвеси мельчайших капелек одной в другой, не растворяющей первую;

5) твердые тела вроде перламутра, опалов, молочных стекол.

В результате рассеяния света в боковых направлениях интенсивность в направлении распространения убывает быстрее, чем в случае одного поглощения. Поэтому для мутного вещества в выражении (2.19.11), наряду с коэффициентом истинного поглощения c, должен стоять добавочный коэффициент c ‘ , обусловленный рассеянием:

Величина c’ носит название коэффициента экстинкции. Если размеры неоднородностей малы по сравнению с длиной световой волны (не более 0,1l), интенсивность рассеянного света J оказывается пропорциональной четвертой степени частоты и обратно пропорциональной четвертой степени длины волны:

(2.19.13)

Эта зависимость носит название закона Рэлея. Даже тщательно очищенные от посторонних примесей и загрязнений жидкости и газы, которые нельзя считать мутными средами, в некоторой степени рассеивают свет. Л.И.Мандельштам и М.Смолуховский установили, что причиной проявления оптических неоднородностей является в этом случае флуктуации плотности.Эти флуктуации вызваны беспорядочным движением молекул вещества; поэтому обусловленное ими рассеяние света называется молекулярным.

Молекулярным рассеянием объясняется голубой цвет неба. Непрерывно возникающие в атмосфере, вследствие беспорядочного молекулярного движения, места сгущения и разрежения воздуха рассеивают солнечный свет. При этом согласно закону Рэлея голубые и синие лучи рассеиваются сильнее, чем желтые и красные, обуславливая голубой цвет неба. Когда Солнце находится низко над горизонтом, распространяющиеся непосредственно от него лучи проходят большую толщину рассеивающей среды, в результате чего они оказываются обогащенными большими длинами волн. По этой причине небо на заре окрашивается в красные тона.

Дата добавления: 2015-07-22 ; просмотров: 8004 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

РАССЕЯНИЕ СВЕТА, УРАВНЕНИЕ РЭЛЕЯ И ЕГО АНАЛИЗ

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

Гетерогенность дисперсных систем является причиной их оптической неоднородности и вызывает изменение направления световых, электронных, ионных и других лучей на межфазных поверхностях, а также неодинаковое поглощение или пропускание лучей веществами сопряженных фаз дисперсной системы. Всё это является причиной появления целого ряда специфических оптических явлений, присущих только коллоидным системам. Отличие оптических свойств коллоидных систем от свойств однородных сред привело к созданию целого ряда оптических методов исследования дисперсных систем, которые широко используются для изучения состава и структуры фаз, свойств межфазных поверхностей, дисперсности системы, а также природы, состава и структуры поверхностных слоёв.

Теоретические основы оптических явлений, характерных для дисперсных систем, и оптические методы их исследования следует изучить по учебникам, перечень которых приведен в списке литературы. В данном методическом пособии даётся только краткое теоретическое введение.

Основная часть издания посвящена практической части раздела «оптические свойства дисперсных систем» курса коллоидной химии и содержит подробное описание лабораторной работы по теме с практическими рекомендациями по её выполнению, обработке полученных данных и составлению отчета. Перед началом работы необходимо прочитать и принять к неукоснительному исполнению правила по технике безопасности, которые приведены в начале описания лабораторной работы и являются дополнением к общему инструктажу, проводимому со студентами в начале семестра.

Освоение практической части следует начинать только после изучения теории. Для теоретической подготовки по теме ниже приводится план теоретического коллоквиума. В конце методического пособия приведено приложение, которое является вспомогательным материалом, полезным для самоконтроля: контрольные вопросы и задачи.

ПЛАН ТЕОРЕТИЧЕСКОГО КОЛЛОКВИУМА

1. Общая характеристика оптических явлений.

2. Явление рассеяния света. Эффект Тиндаля. Влияние размеров частиц на вид индикатриссы рассеяния (диаграмма Ми).

3. Уравнение Рэлея и его анализ.

4. Светорассеяние токопроводящими сферическими частицами.

5. Абсорбция света. Уравнение Бугера – Ламберта — Бера. Оптическая плотность раствора, светопропускание, относительное поглощение.

6. Оптические методы исследования коллоидных систем: (принципиальные основы метода, его возможности и границы применимости):

а) световая и электронная микроскопия;

г) нефелометрия; определение молярной массы макромолекул.

7. Окраска коллоидных систем.

8. Лабораторная работа. Определение размеров частиц дисперсных систем турбидиметрическим методом:

a) Принципиальная оптическая схема фотоэлектроколориметра;

б) Определение размеров частиц дисперсных систем, подчиняющихся уравнению Рэлея;

в) Определение размеров частиц дисперсных систем, не подчиняющихся уравнению Рэлея, метод Геллера.

9. Самоподготовка по контрольным вопросам и задачам в приложении.

СПИСОК ЛИТЕРАТУРЫ

1. Фролов Ю.Г. Курс коллоидной химии. М., Химия, 1982г., с.245-267.

2. Боюцкий С.С. Курс коллоидной химии. М., Химия, 1975г., с. 33-53

3. Фридрихсберг Д.А. Курс коллоидной химии. Л., Химия, 1984г., с.38-44.

4. Лабораторные работы и задачи по коллоидной химии.- Под. ред. Ю.Г. Фролова и А.С. Гродского. М., Химия, 1986г., с.111-117.

5. Расчёты и задачи по коллоидной химии. Под ред. В.И.Барановой. М., Высш. шк., с. 254-260.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

РАССЕЯНИЕ СВЕТА, УРАВНЕНИЕ РЭЛЕЯ И ЕГО АНАЛИЗ

При падении луча света на дисперсную систему возможно его прохождение или преломление, а также отражение, рассеяние или поглощение света частицами дисперсной фазы. Прохождение света характерно для прозрачных гомогенных сред. Отражение – для микрогетерогенных и грубодисперсных систем с размерами частиц, превышающими длину волны падающего света (0,4 — 0,7 мкм), и проявляется в виде мутности суспензий, эмульсий и аэрозолей. Для коллоидных систем с радиусом частиц меньше длины волны падающего света характерны явления рассеяния света (опалесценция) и его поглощение (абсорбция).

Теория светорассеяния для сферических частиц, не проводящих электрический ток, разработана Рэлеем.

Дисперсные системы с размерами частиц, меньше длины световой волны, рассеивают свет во всех направлениях. При этом каждая точка неоднородности становится источником вторичных электромагнитных колебаний с частотой, равной частоте волны падающего света (дифракция). Частица представляет собой, таким образом, наведенный диполь, равный произведению поляризуемости частицы α на напряженность электрического поля Е:

Интенсивность рассеянного света определяется величинами, входящими в уравнение (1). Поляризуемость частицы α пропорциональна её объёму V, а интенсивность рассеяния света пропорциональна квадрату поляризуемости и, следовательно, квадрату объёма частицы. Таким образом, с ростом размера частиц интенсивность рассеяния возрастает. На поляризуемость влияет также разность показателей преломления дисперсной фазы n и дисперсионной среды n0.

Напряженность электрического поля Е характеризует плотность энергетического потока подающего света (его интенсивность) и пропорциональна квадрату амплитуды волны, излучаемой электрическим диполем (частицей дисперсной фазы). А поскольку амплитуда волны пропорциональна квадрату частоты колебаний диполя, то интенсивность рассеянного света Јр пропорциональна частоте колебаний диполя в четвертой степени или обратно пропорциональна длине волны λ в четвертой степени.

Если падающий свет не поляризован, то интенсивность рассеянного света зависит от направления распространения излучения: Јр пропорциональна (1+cos 2 Θ), где Θ – угол между направлениями падающего и рассеянного света ( угол рассеяния).

Таким образом, интенсивность рассеянного света различна в разных направлениях, при этом рассеянный свет частично поляризован. Рассеяние и поляризацию света частицей во всех направлениях характеризует векторная диаграмма Ми (рис.1). Стрелка указывает направление падающего луча. Незаштрихованная область соответствует интенсивности неполяризованного света, заштрихованная – поляризованной части.

Как видно из диаграммы, рассеянный свет не поляризован в направлении падающего луча и под углом 180 о . Максимально поляризован свет, рассеянный под углом 90 о к падающему лучу.

Теория Рэлея применима к разбавленным коллоидным растворам, поэтому возможность вторичного рассеяния не учитывается, и интенсивность рассеянного света пропорциональна числу частиц в единице объема, ν.

Уравнение Рэлея для интенсивности света Јр , рассеянного единицей объема дисперсной системы со сферическими частицами, не проводящими электрический ток, радиусом, значительно меньшим длины волны падающего света (r ≤ 0,1λ), на расстоянии R от частиц, в направлении, составляющем угол Θ с направлением падающего луча, имеет вид:

Jр= (2)

F = (3)

J0 – интенсивность падающего света;

ν — число частиц дисперсной фазы в единице объема (частичная концентрация);

и — соответственно, показатель преломления вещества дисперсной фазы и дисперсионной среды;

— объем одной частицы.

Рис.1. Диаграммы Ми, характеризующие рассеяние и поляризацию света сферическими частицами, не проводящими электрический ток:

а) малой; б) крупной частицей

Рассмотрим влияние различных параметров на интенсивность рассеянного света в соответствии с уравнением Рэлея.

1. Уравнение (2) применимо при отсутствии поглощения света, для «белых» неметаллических золей.

2. Область строгой применимости уравнения ограничена условием где r – радиус частиц дисперсной фазы. Для видимой части спектра это соответствует значениям радиуса r -6 см. Зависимость от r используется для определения размеров частиц дисперсных систем. Превышение указанных размеров частиц и приближение их к значениям приводит к снижению показателя степени при в уравнении Рэлея с 4 до 2,8. Нижняя граница показателя степени соответствует значениям r , когда явление рассеяния заменяется отражением света. Когда значение показателя степени при становится меньше 4, закон Рэлея перестает соблюдаться и для определения радиуса частиц пользуются эмпирическими методами. Наиболее распространен из них рассмотренный ниже метод Геллера.

3. Зависимость интенсивности рассеянного света от концентрации частиц используется для определения концентрации (в отсутствие многократного рассеяния).

4. Согласно уравнению Рэлея, чем выше дисперсность частиц, тем меньше рассеяние. Приближение размеров частиц к молекулярным приводит к исчезновению опалесценции.

5. обратно пропорциональна λ 4 , т.е. при прохождении через коллоидный раствор пучка белого света рассеиваются в основном короткие волны, т.е. синяя область спектра. Это проявляется в голубоватой окраске коллоидных систем при боковом наблюдении. При рассмотрении кюветы с коллоидным раствором в проходящем свете, т.е. когда источник света по отношению к наблюдателю находится за кюветой, — раствор имеет оранжево – красные оттенки. Указанная закономерность объясняет применение синего цвета для светомаскировки и красного для сигнализации. Голубой цвет неба также объясняется опалесценцией, рассеиванием коротких волн солнечного излучения атмосферой Земли. При восходе и заходе солнца мы наблюдаем свет, прошедший через атмосферу, поэтому небо мы воспринимаем окрашенным в оранжево – красные тона.

6. Разность показателей преломления частицы и среды весьма мала у растворов высокомолекулярных соединений и некоторых эмульсий. Светорассеяние для таких систем мало (в соответствии с уравнением (2)).

Рассеяние света в мелкодисперсных и мутных средах

Вы будете перенаправлены на Автор24

Механизм рассеяния света

С точки зрения классической физики рассеяние света состоит в том, что волна света, распространяясь сквозь вещество, является причиной колебания электронов в атомах (молекулах). Данные электроны вызывают вторичные волны, которые распространяются по всем направлениям. Эти волны когерентны между собой, следовательно, подвержены интерференции.

Расчеты ведут к следующему выводу: если среда является однородной, вторичные волны полностью гасят друг друга по всем направлениям (исключение составляет направление распространения первичной волны). Это означает, что рассеяния в однородной среде не происходит.

В неоднородной среде волны света дифрагирует на мелких неоднородностях среды. Возникает картина дифракции в виде почти равномерного распределения интенсивности по всем направлениям. Данное явление и называют рассеянием света.

Примерами подобных сред являются вещества с явно выраженной оптической неоднородностью, так называемые мутные среды. Это, например, дым, туман (аэрозоли), коллоидные растворы, матовые стекла, и другие вещества, которые имеют мелкие частицы, показатель преломления которых отличен от показателя преломления окружающего вещества.

Законы рассеяния световых волн в мутных средах первым эмпирически исследовал Тиндаль. Такое рассеяние называют Тиндалевским. Падающий на мутное вещество свет частично рассеивается по всем направлениям.

Тиндаль наблюдал то, белый свет при рассеянии становился сиреневатым. Ученый объяснил это тем, что синий цвет и поляризация неба определены рассеянием света солнца на мелких частицах пыли, которая имеется в атмосфере.

Закон Рэлея

Рассеяние света в мутных средах на неоднородностях, размеры которых малы в сравнении с длиной волны, можно фиксировать, к примеру, когда яркий пучок света распространяется сквозь воздух с взвесью мелких частиц дыма. В том случае, если мутную воду осветить белым светом, то в рассеянном свете вещество будет казаться голубым, это означает, что преобладают короткие волны спектра. В свете, который прошел толстый слой мутного вещества, выявляются длинные волны, при этом вещество кажется красноватым.

Готовые работы на аналогичную тему

Причиной данного явления стало то, что электроны, которые вынуждены колебаться в атомах электрически изотопных частиц небольшого размера (порядка 0,1$\lambda $) подобны одному диполю. Данный диполь совершает колебания с частотой, падающей на него волны света, при этом интенсивность света, который он излучает, пропорциональна четвертой степени частоты или обратно пропорциональна четвертой степени длины волны:

Данную зависимость называют законом Рэлея. Из данного закона следует, что волны корочкой части спектра испытывают рассеяние интенсивнее, чет длинные волны.

Поляризация рассеянного света

Интенсивность рассеянного света ($I$) в мутной среде зависит от угла рассеяния ($\theta $):

где $I_0=AI_0\frac<<\lambda >^4>$ — интенсивность света, который рассеян под углом $90^\circ$ к направлению изначального направления пучка света, $I_0$- интенсивность падающей волны, $n_0-\ $концентрация частиц, $V$ — объем частиц, $A$ — коэффициент пропорциональности. Если молекулы рассеивающих частиц электрический изотропны (не полярные молекулы), то рассеянный свет оказывается поляризованным частично по всем направлениям, кроме направления при $\theta =\frac<\pi ><2>\ $. В данном направлении рассеянный свет окажется полностью поляризованным.

В том случае, если размеры неоднородностей сравнимы с длинной световой волны, то электроны в разных местах неоднородности совершают не синфазные колебания. Закон Рэлея нарушается. В таком случае:

Свет, который рассеян под углом $\theta =\frac<\pi ><2>,$ поляризован частично.

Если размеры неоднородностей больше, чем длина волны света, спектр рассеянного сета почти совпадает со спектральным составом первичного пучка. Экспериментально данное рассеяние изучал Ми. Индикатрисы рассеяния для больших частиц отличаются от рэлеевских, он не являются симметричными. По виду индикатрис оценивают размер частиц.

Рассеяние Ми

Теория Рэлея неплохо описывает рассеяние на молекулах и малых сферических частицах, радиус которых меньше чем $0,03\lambda $. При увеличении размеров частиц наблюдается отклонение от теории Рэлея и следует использовать теорию Ми. Данная теория учитывает размеры частиц и представляет рассеяние как ряд, малым параметром в нем служит величина:

где $a$ — радиус сферической частицы. Теория рассеяния Ми строго говоря, относится только к сферическим частицам, но термин «рассеяние Ми» используют и для рассеяния частиц другой формы. Из выражения (3) следует, что имеет значение не столько абсолютный размер частиц, а соотношения $\frac<\lambda >$. При $\alpha

Отличия механизмов рассеяния Ми от рассеяния Рэлея вызваны:

При рассеянии Ми следует учитывать влияние переизлучения первичной волны элементарными рассеивателями. В отличие от рассеивания Рэлея рассеиватели у Ми находятся в разных электромагнитных полях. То есть коэффициент преломления в объеме частицы отличен от единицы.

В рассеянии Ми следует учесть различие в фазах излучения элементарных рассеивателей и разность фаз, которую вносит в исследуемое излучение конечное расстояние между элементарными рассеивателями. Это ведет к зависимости распределения интенсивности излучения от направления, которая выражает зависимость условий интерференции излучения элементарных рассеивателей от их расположения относительно точки наблюдения.

С точки зрения математики, теория Ми сводится к решению уравнений Максвелла с граничными условиями на поверхности сферической частицы произвольного радиуса. Она характеризуется диэлектрической и магнитной проницаемостью и электропроводностью. Решение имеет вид рядов, которые дают полную информацию о рассеянии.

Рассеянный свет в данном явлении поляризован частично. Даже если падающее излучение неполяризованное. При этом характер поляризации зависит от оптических свойств частиц и направления наблюдения рассеяния.

Важной особенностью рассеяния Ми является его малая зависимость от длины волны.

Приведите примеры рассеяния Ми.

Решение:

Множественность проявлений рассеяния Ми вызвано многообразием частиц, на которых осуществимо рассеяние световой волны. Так, например, мы наблюдаем данный тип рассеяния, когда видим небо, которое приобрело белесый оттенок при задымлении атмосферы. При полете в самолете на большой высоте нет четкой линии горизонта, ее застилает атмосферная дымка. Данные явления вызваны рассеянием Ми на аэрозолях воздуха. Непрозрачный туман — рассеяние небольшими каплями воды.

Какого цвета было бы небо, если бы рассеяние света отсутствовало?

Решение:

В том случае, если бы не было рассеяния света, то небо было бы абсолютно черным. На нем все небесные светила выделялись бы более ярко и контрастно. Подобным видно небо из космоса. При наличии атмосферы существенная часть прямого солнечного излучения рассеивается по разным направлениям. Доля рассеиваемого света увеличивается с уменьшением длины волны. Вследствие чего, рассеянный свет обогащен короткими волнами, что объясняет цвет неба. При закате и восходе прямой свет Солнца проходит через толстый слой атмосферы, в таком случае существенная часть излучения с короткой волной теряется на рассеяние. До поверхности Земли доходят из состава прямого света в основном красные лучи. Поэтому на восходе и закате Солнце красное. Так же можно объяснить цвет зари.


источники:

http://poisk-ru.ru/s82873t1.html

http://spravochnick.ru/fizika/optika/rasseyanie_sveta_v_melkodispersnyh_i_mutnyh_sredah/