Уравнение моментов машин постоянного тока

Основные уравнения двигателя постоянного тока (ДПТ)

В этой статье описаны основные формулы, величины и их обозначения которые относятся ко всем двигателям постоянного тока.

В результате взаимодействия Iя тока якоря в проводнике L обмотки якоря с внешним магнитным полем возникает электромагнитная сила создающая электромагнитный момент М который приводит якорь во вращение с частотой n.

Противо ЭДС двигателя Eя

При вращении якоря пазовый проводник пресекает линии поля возбуждения с магнитной индукцией B и в соответствии с явлением электромагнитной индукции в проводнике наводится ЭДС Eя направленная навстречу Iя. Поэтому эта ЭДС называется противо ЭДС и она прямо пропорциональна Ф магнитному потоку и частоте вращения n.

Ce — постоянный коэффициент определяемой конструкцией двигателя.

Применив второй закон Кирхгофа получаем уравнение напряжения двигателя.

где ∑R — суммарное сопротивления обмотки якоря включающая сопротивление :

  • обмотки якоря
  • добавочных полюсов
  • обмотки возбуждения (для двигателей с последовательным возбуждением)

Ток якоря Iя

Выразим из формулы 2 ток якоря.

Частота вращения якоря

Из формул 1 и 2 выведем формулу для частоты вращения якоря.

Электромагнитная мощность двигателя

Электромагнитный момент

где: ω = 2*π*f — угловая скорость вращения якоря, Cм — постоянный коэффициент двигателя (включает в себя конструктивные особенности данного двигателя)

Момент на валу двигателя, т.е. полезный момент, где М0 момент холостого хода;

Машины постоянного тока.

Устройство, назначение отдельных частей машины (главные полюсы – создание основного магнитного потока; якорь – индуктируется ЭДС; щёточно-коллекторный аппарат – механический выпрямитель в режиме генератора, перераспределение тока по обмотке якорь-двигатель). Принцип работы в режиме генератора (якорь вращается в неподвижном поле полюсов статора; в проводниках обмотки якоря индуктируется переменная ЭДС , однако напряжение на зажимах машины сохраняет постоянное направление вследствие выпрямления его щёточно-коллекторным устройством; если якорь замкнуть на нагрузку, по нагрузке потечёт постоянный ток) и в режиме двигателя (постоянное напряжение подаётся на обмотки якоря и возбуждения; создаётся поле главных полюсов, и по якорю пойдёт ток; при взаимодействии тока якоря и магнитного поля возникает электромагнитный момент, который начинает вращать якорь, совершая механическую работу).

Связь между ЭДС и напряжением в генераторном и двигательном режимах . Обратимость машин постоянного тока.

, В,

где Ф, Вб – магнитный поток одного полюса.

,

где р – число пар полюсов,

а — число пар параллельных ветвей,

N – число проводников якоря.

Генератор – ЭДС, двигатель – противоЭДС.

При n = const и поток полюса и соответствующая ему ЭДС зависят только от тока возбуждения – характеристика Х.Х.

Вращающий (двигатель), тормозной (генератор) момент

, Н·м,

, , .

Электромагнитный момент машины постоянного тока пропорционален току якоря и результирующему потоку каждого полюса.

Уравнение баланса мощностей цепи якоря генератора:

.

Правая часть уравнения выражает мощность нагрузки и электрические потери мощности в обмотке якоря. Их сумма равна — мощности, получаемой от первичного двигателя при преобразовании его механической энергии в электрическую.

Величина — электромагнитная мощность машин, характеризует скорость процесса преобразования энергии.

Для электродвигателя баланс мощностей цепи якоря:

.

Это уравнение означает, что мощность поступления энергии в якорь электродвигателя от внешнего источника равна электромагнитной мощности и мощности потерь в обмотке якоря. Электромагнитная мощность равна механической мощности вращения якоря .

Работа машины постоянного тока сопровождается потерями энергии и нагревом её частей:

— электрические потери во внутренней цепи якоря от тока нагрузки;

— потери от трения в подшипниках и о воздух, обычно составляющие 1 – 2%;

— потери в магнитной цепи (якоре) от гистерезиса и вихревых токов, составляющие 1 – 3%;

— потери на возбуждение или самовозбуждение, т.е. электрические потери в цепи обмотки возбуждения.

Способы возбуждения машин постоянного тока.

Независимое Последовательное (сериесные)

.

Параллельное (шунтовые) Смешанное

генераторный: ;

двигательный: .

Генераторы с самовозбуждением.

Условия самовозбуждения (наличие остаточного потока, совпадение по направлению и Ф, сопротивление цепи возбуждения должно быть меньше критического).

Двигатели при включении якоря на номинальное напряжение сети ( = 0) пусковой ток будет недопустимо велик. Поэтому в цепь якоря при пуске двигателя вводят добавочное сопротивление в виде специального пускового реостата. Сопротивление выбирается таким, чтобы пусковой ток не превышал (1,5÷2) .

.

Уравнение механической характеристики: .

,

.

Из механической характеристики – способы регулирования скорости двигателя:

1) изменение напряжения на якоре U,

2) изменение потока возбуждения Ф,

3) изменение добавочного сопротивления в цепи якоря.

Задача 1.

Генератор независимого возбуждения имеет следующие номинальные данные: , , . Сопротивление обмотки якоря в нагретом состоянии Ом.

Построить внешнюю характеристику генератора и определить его электромагнитную мощность , а также изменение напряжения на зажимах при переходе от номинального режима к режиму Х.Х. Реакцией якоря и падением напряжения в контактах щёток пренебречь.

Внешняя характеристика генератора строится по уравнению:

, это .

В генераторе независимого возбуждения . Для построения внешней характеристики – прямая линия – достаточно определить величину напряжения при двух фиксированных режимах работы. Такими режимами работами будем считать номинальный режим и режим Х.Х.

Если пренебречь реакцией якоря, то можно считать

.

.

Координаты точек характеристики .

, — номинальный режим.

, — холостой ход.

кВт.

Изменение напряжения на зажимах генератора: .

1. Как определяется величина тока генератора независимого возбуждения при режиме К.З.? Опасен ли этот режим для машин?

Величина магнитного потока практически не зависит от нагрузки, следовательно практически постоянной будет и ЭДС генератора. При К.З. U=0, следовательно .

=13480 А.

Ток возрастает в 17 раз, что чрезвычайно опасно.

2. Какие причины вызывают уменьшение напряжения генератора при росте нагрузки?

а) при росте нагрузки увеличивается падение напряжения в цепи якоря,

б) хоть и незначительно, изменяется (уменьшается) ЭДС, вследствие реакции якоря.

Задача 2.

На сколько процентов нужно уменьшить магнитный поток генератора постоянного тока с независимым возбуждением и напряжением на выводах , если нагрузка уменьшилась с 3 до 1,5 кВт, чтобы при этом напряжение на выводах осталось постоянным? Падение напряжения на щётках . Всеми потерями можно пренебречь, учесть только влияние реакции якоря и потери в якорной цепи. Сопротивление обмотки якоря Ом.

1) Уравнение электрического равновесия для двух нагрузок:

, ,

где , (подразумевается, что скорость вращения при изменении нагрузки не изменяется).

2) В генераторах с независимым возбуждением , поэтому . По заданным мощностям нагрузок можно определить токи якоря для двух режимов работы:

А, А.

3) Так как ЭДС пропорциональны магнитным потокам, можно записать .

Относительное изменение магнитного потока:

.

Итак, чтобы напряжение осталось неизменным при уменьшении нагрузки, поток требуется уменьшить на 5,5%.

Задача 3.

Генератор постоянного тока с независимым возбуждением, число полюсов 2р=4, номинальная мощность кВт. Индукция воздушного зазора при холостом ходе изменяется вдоль зазора так, как это показано на рисунке. Максимальная индукция воздушного зазора Тл, число проводников N=430, обмотка волнового типа, сопротивление якоря Ом.

Основные размеры машины: диаметр якоря м, расчётная длина м, n=1500 об/мин, падение напряжения на щётках В.

1) Среднюю индукцию воздушного зазора Вб;

2) Полюсное деление и окружную скорость якоря ;

3) число проводников, включённых последовательно в одной ветви обмотки;

4) индуктированную ЭДС;

5) напряжение на выводах генератора и номинальный ток якоря .

1) Вб – среднее значение индукции на протяжении полюсного деления .

,

Тл.

2) Полюсное деление м.

Окружная скорость якоря:

м/мин м/с.

3) Число последовательно включённых проводников одной параллельной ветви ,

где 2а=2 – число параллельных ветвей при простой волновой обмотке не зависит от числа полюсов и всегда равно 2.

4) ЭДС, индуктированная в якоре ,

где Ф – полезный магнитный поток.

Вб.

В.

5) Уравнение электрического равновесия якорной цепи в номинальном режиме:

, ,

,

,

,

,

,

,

В, В.

Значение можно отбросить, так как оно имеет порядок остаточного напряжения. Следовательно, В.

А.

Дополнительный вопрос.

Машина постоянного тока, рассмотренная в задаче, подключается к сети при напряжении на выводах U=220 В. Ток возбуждения неизменён. Машину в качестве двигателя нагружают до номинальной нагрузки. При этом ток якоря А. Определить частоту вращения двигателя и полезный момент М.

Уравнение электрического равновесия в режиме двигателя:

,

— ток как ток возбуждения не изменился, поток также остаётся неизменным.

,

об/мин.

Развиваемый при этом момент Н·м.

Задача 4.

Четырёхполюсный генератор постоянного тока вращается с частотой n =1500 об/мин. Диаметр якоря м, расчётная длина пакета якоря м, длина полюсной дуги в = 0,162 м. Данные обмотки: число пазов z = 43, число катушечных сторон в одном слое паза u = 3, число витков в секции w = 1. Обмотка волновая, лобовые части обмотки не перекрещиваются.

1) Построить обмотку так, чтобы она не была ступенчатой;

2) Определить полезный поток машины, если ЭДС Е = 414 В;

3) Определить значение индукции воздушного зазора: среднюю Вб и максимальную Вбmax.

1) Если обмотка не ступенчатая, катушечные стороны располагаются совместно в одном пазу. При этом – пазовый шаг (выражается в количестве зубцовых делений) должен выражаться целым числом.

, т.е. необходимо произвести удлинение на ,

— первый частичный шаг, выражен в числе катушечных сторон.

Число коллекторных пластин k = u·z = 3·43 =129.

Коллекторный шаг .

Второй частичный шаг .

Число действующих проводников по периметру якоря: N = 2·u·z·w = 2·3·43·1 = 288.

Схема соединения на рисунке 6.

2) Полезный магнитный поток машины определяется из соотношения .

Вб.

Средняя индукция воздушного зазора:

Тл,

м, полюсное деление машины.

Максимальное значение индукции:

Тл.

Задача 5.

Схема замещения генератора постоянного тока приведена на рис.7.

Uн = 230 В, Iя = 29,6 А, Rя = 0,7 Ом, Ом.

Второй закон Кирхгофа – уравнение электрического состояния генератора В.

Номинальный ток возбуждения (закон Ома):

А.

Мощность на нагрузке:

Вт.

Задача 6.

Условие то же. Построить внешнюю характеристику.

Определить U и Р при I = 24 А.

,

,

P = U·I = 232,5·24 = 5580 Вт.

232,5

Задача 7.

Характеристика Х.Х. генератора независимого возбуждения задана:

Е, В
Iв, А1,54,5

Номинальные данные генератора: Рн = 178 кВт, Uн = 230 В, Iян = 775 А, номинальное напряжение на зажимах обмотки возбуждения Uвн = 100 В.

Определить собственное сопротивление обмотки возбуждения Rв, а также сопротивление регулировочного реостата Rp, включаемого в цепь обмотки возбуждения для того, чтобы при неизменном сопротивлении нагрузки R = 0,297 Ом напряжение на её зажимах было равно .

При номинальном режиме , отсюда В.

Согласно характеристике Х.Х. этому значению ЭДС соответствует номинальное значение тока возбуждения Iвн = 4,5 А.

Номинальный режим создаётся при полностью выведенном регулированном реостате. Поэтому собственное сопротивление обмотки возбуждения: Ом.

При снижении напряжения до величины В уменьшается соответственно и ток нагрузки, равный току якоря: А.

ЭДС обмотки якоря в этом случае определится:

в.

Этому значению ЭДС соответствует на характеристике Х.Х. Iв = 1,55 А. При этом сопротивление цепи возбуждения — .

Ом.

Сопротивление регулировочного реостата: Ом.

Задача 8.

Генератор постоянного тока с параллельным возбуждением характеризуется следующими номинальными величинами: напряжение Uн, мощность Рн. Мощность потерь в номинальном режиме в % от Рн, в цепи возбуждения Рв.

1) Номинальный ток нагрузки генератора Iн;

2) Номинальный ток возбуждения Iв;

3) Номинальный ток якоря Iя;

4) Сопротивление цепи якоря Rя;

5) ЭДС якоря при токе, равном номинальному;

6) Сопротивление цепи возбуждения при токе возбуждения, равном номинальному;

7) сопротивление обмотки возбуждения, принимая, что при холостом ходе генератора и полностью выведенном реостате в цепи возбуждения ток в этой цепи составляет 1,5Iвн.

При решении воспользоваться зависимостью Е=f(Iв).

Iв, %
Е, %
ВариантыUн, ВРн, кВтРя, %Рв, %
7,5
7,5
6,5
5,5
1,5
4,51,5

Задача 9.

Двигатель постоянного тока параллельного возбуждения включён в сеть U = 110 В, сопротивление обмотки якоря двигателя Rя = 0,07 Ом. При половинной нагрузке частота вращения двигателя n = 1400 об/мин, якорный ток Iя = 74 А. Определить частоту вращения двигателя, если в цепь якоря включено внешнее добавочное сопротивление Rдоб = 0,3 Ом, а нагрузочный момент увеличился вдвое. При этом пренебречь реакцией якоря, а падение напряжения на щётках считать равным В.

Момент двигателя постоянного тока . Сравним два режима работы. Так как реакцией якоря можно пренебречь, в обоих случаях поток остаётся неизменным, а поэтому: , .

А.

Уравнение электрического равновесия:

, отсюда для первого случая:

В,

.

Для второго случая:

, об/мин.

Задача 10.

Для тяговых двигателя последовательного возбуждения одинаковой конструкции нагружаются поочерёдно. Напряжение сети U = 500 В. В начале к сети подключается один из этих двигателей и нагружается до тех пор, пока его частота вращения не достигнет n1 = 700 об/мин. Потребляемый из сети ток этого двигателя равен Iя1 = 50 А. Затем то же самое проделывают со вторым двигателем. При той же частоте вращения потребляемый из сети ток Iя2 = 55 А. Внутренне сопротивление цепи якоря каждого двигателя Rя = 0,3 Ом. Валы двух двигателей соединены муфтой. Их электрические цепи соединены последовательно и подключены к сети U = 500 В. Затем оба двигателя нагружаются до тех пор, пока потребляемый ток достигнет значения = 50 А.

Какова частота вращения машин и в каком соотношении находятся их потребляемые мощности? Предположим, что магнитная цепь машин не насыщена и при малых изменениях магнитный поток изменяется пропорционально току.

Определим индуктированные ЭДС двигателей при их раздельном испытании.

В,

,

.

В,

.

При последовательном включении двигателей:

По условию задачи, магнитный поток изменяется пропорционально току. Так как , поток первого двигателя не изменяется .

Поток второго двигателя определён из соотношения:

, .

,

об/мин.

Определяем напряжение на выводах каждого двигателя:

В,

В.

Отношение потребляемых мощностей:

.

Задача 11.

Двигатель постоянного тока параллельного возбуждения имеет следующие номинальные данные: Рн = 12 кВт, Uн = 220 В, nн = 685 об/мин, Iн = 64 А, Iвн = 1,75 А. Сопротивление обмотки якоря в нагретом состоянии Rя = 0,281 Ом.

Определить скорость вращения якоря двигателя при Х.Х. и тормозном моменте на валу, равном 0,6Мн. Поострить естественную механическую характеристику. Размагничивающим действием реакции якоря пренебречь.

Скорость вращения якоря в режиме идеального Х.Х., когда Uн = Ео, , скорость вращения в режиме номинальной нагрузки . Из этих двух соотношений:

об/мин.

Соотношение токов – по схеме по ходу решения.

Условие динамического равновесия при работе двигателя: . Поэтому при изменении тормозного момента изменяется и .

.

Вращающий момент пропорционален току якоря. При постоянном магнитном потоке (реакцией якоря пренебрегаем) вращающий момент изменяется вследствие соответствующего изменения тока якоря. Следовательно, при

,

А,

А.

Записываем выражения, определяющие скорости при и .

, .

Взяв отношение этих скоростей, получим:

= 708 об/мин.

Механическая характеристика n = f(М). Для рассматриваемого двигателя – это прямая линия. Строим по двум точкам: М = 0, n = no = 740 об/мин. М = 0,6Мвр.ном, об/мин.

Естественная механическая характеристика – в цепи якоря отсутствует добавочное сопротивление.

1. Составить уравнение баланса мощностей для двигателя в номинальном режиме.

;

В;

220·62,25 = 202,5·62,25 + 62,25·0,281;

13695 = 12605,6 + 1088,9;

2. Какое дополнительное сопротивление R следует включить в цепь якоря двигателя, чтобы при М = 0,6Мн скорость его вращения снизилась до 630 об/мин?

Соотношение аналогично тому, при котором определилось : дополнительно последовательно с обмоткой якоря включается сопротивление R

, отсюда определяем R

= 0,623 Ом.

При введении в цепь якоря R получим искусственную механическую характеристику (график).

3. Определить мощность потерь в регулировочном сопротивлении

Вт.

Задача 12.

Двигатель постоянного тока с независимым возбуждением, компенсированный (магнитный поток постоянен), номинальная мощность Рном = 22 кВт, число полюсов 2р = 4, напряжение на выводах U = 220 В, номинальная частота вращения n = 1500 об/мин, КПД . На якоре N = 248 проводников, обмотка – волновая, внутреннее сопротивление обмотки якоря Rя = 0,1 Ом. Напряжение возбуждения Uв = 220 В, сопротивление обмотки возбуждения Rв = 82,5 Ом. Пренебречь падением напряжения на щётках, потерями на трение и вентиляцию, а также реакцией якоря.

1) Рассчитать естественную механическую характеристику, считая сопротивление якорной цепи Rя, рассчитать искусственную механическую характеристику при добавочном сопротивлении в цепи якоря Rдоб = 2 Ом;

2) Определить добавочное сопротивление, включаемое последовательно с якорной цепью, для номинального момента, чтобы получить n = 900 об/мин;

3) Определить, насколько нужно уменьшить напряжение на выводах, если необходимо установить n = 900 об/мин при номинальном моменте;

4) Определить, насколько нужно увеличить сопротивление цепи возбуждения, чтобы частота вращения стала равной = 1600 об/мин при номинальном моменте. Характеристика холостого хода машины приведена в виде таблицы

206,5
0,51,52,2

1) Механическая характеристика двигателя – это зависимость частоты вращения от момента n = f(M).

Если считать поток постоянным и пренебречь падением напряжения на щётках, то

.

Получим уравнение прямой, наклон которой к горизонтальной оси определяется величиной m. Теоретически при идеальном холостом ходе Iя = 0 и . В действительности из-за потерь в машине ток в якоре при холостом ходе не может быть равным нулю.

Итак, . Величину СЕ·Ф определим из уравнения ЭДС для номинального режима.

.

об/мин.

А.

nх = 1583, М = 0 – точка Х.Х. естественной механической характеристики (рис. 8).

Вторая точка – определяется номинальным режимом

Мном = .

На графике – естественная механическая характеристика – 1.

Для искусственной механической характеристики первая точка – точка холостого хода.

Вторую точку можно определить как точку пуска: n = 0, М = Мпуск.

А.

Момент в номинальной точке и пусковой момент: , . Из двух уравнений находим Мпуск.

На графике – искусственная механическая характеристика 2.

2) Введение добавочного сопротивления в цепь якоря – один из способов регулирования частоты вращения двигателя постоянного тока (уменьшение).

Так регулирование происходит при постоянном моменте, ток якоря в установившемся режиме остаётся неизменным. Если М = Мном, то и Iя = Iя.ном, а поэтому , делаем числовые подстановки и определяем величину добавочного сопротивления:

.

.

125,064 = 220 – 11,56 — Rдоб·115,6,

Механическая характеристика на графике – 3.

Изменение оборотов ,

.

3) Изменение величины питающего напряжения – ещё один способ регулирования частоты вращения двигателя (уменьшение).

Механические характеристики при сохранении неизменным момента в случае уменьшения напряжения сдвигаются параллельно естественной характеристике. При номинальном моменте разность частот вращения об/мин. Из параллельности прямых следует, что новая частота вращения холостого хода при пониженном напряжении об/мин.

Для идеального холостого хода:

, , отсюда

.

Итак, напряжение питания надо уменьшить на 83,4 В. Механическая характеристика на графике – 4.

4) Изменение сопротивления цепи возбуждения – ещё один способ изменения скорости вращения двигателя (увеличение).

Уравнение механической характеристики:

, ( ).

Если увеличивается сопротивление цепи возбуждения, ток возбуждения уменьшается, уменьшается и основной поток. Механическая характеристика становится более крутой, частота вращения в режиме холостого хода растёт.

Определим постоянные машины:

, .

При заданной частоте вращения определим величину магнитного потока:

,

,

,

,

, .

Выбираем первое решение, так как второе слишком мало для машины с Истинный магнитный поток машины

Частота вращения при холостом ходе:

.

На графике – механическая характеристика – 5.

При магнитном потоке индуцированная ЭДС:

.

По характеристике холостого хода определяется ток возбуждения: .

Требуемое сопротивление цепи возбуждения:

.

Отсюда

Задача 14.

Электродвигатель постоянного тока с параллельным возбуждением выполнен на номинальное напряжение 220 В. Данные номинального режима электродвигателя: мощность , скорость вращения якоря , КПД . Ток в цепи возбуждения составляет % от номинального тока электродвигателя. Мощность потерь в цепи якоря при номинальной нагрузке составляет 5,0% от суммарной мощности потерь в электродвигателе.

1) номинальный момент на валу электродвигателя;

2) ток , потребляемый электродвигателем из сети при номинальной нагрузке;

3) токи в цепи возбуждения и в цепи якоря при номинальной нагрузке;

Общие сведения о двигателях постоянного тока

Автор: Евгений Живоглядов.
Дата публикации: 01 марта 2013 .
Категория: Статьи.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и так далее).

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

Схемы двигателей и генераторов с данным видом возбуждения одинаковы (рисунок 1 в статье «Общие сведения о генераторах постоянного тока») . В двигателях независимого возбуждения токи якоря Iа и нагрузки I равны: I = Iа, в двигателях параллельного и смешанного возбуждения I = Iа + iв и в двигателях последовательного возбуждения I = Iа = Iв.

С независимым возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы, и поэтому первые ниже отдельно не рассматриваются.

Рисунок 1. Энергетическая диаграмма двигателя параллельного возбуждения

Энергетическая диаграмма

Энергетическая диаграмма двигателя параллельного возбуждения изображена на рисунке 1. Первичная мощность P1 является электрической и потребляется из питающей сети. За счет этой мощности покрываются потери на возбуждения pв и электрические потери pэла = Iа² × Rа в цепи якоря, а оставшаяся часть составляет электромагнитную мощность якоря Pэм = Eа × Iа, которая превращается в механическую мощность Pмх. Потери магнитные pмг, добавочные pд, и механические pмх покрываются за счет механической мощности, а остальная часть этой мощности представляет собой полезную механическую мощность P2 на валу.

Аналогичные энергетические диаграммы, иллюстрирующие преобразование энергии в двигателе, можно построить и для других типов двигателей.

Уравнение вращающих моментов

Электромагнитный момент двигателя

который является движущим и действует в сторону вращения, расходуется на уравновешивание тормозящих моментов: 1) момента M0, соответствующего потерям pмг, pд и pмх, покрываемым за счет механической мощности [смотрите равенство (6) в статье «Общие сведения о генераторах постоянного тока»]; 2) Mв – момента нагрузки на валу, создаваемого рабочей машиной или механизмом; 3) Mдин – динамического момента [смотрите равенство (7) в статье «Общие сведения о генераторах постоянного тока»]. При этом

Mэм = M0 + Mв + Mдин(1)
Mэм = Mст + Mдин(2)

является статическим моментом сопротивления.

При установившемся режиме работы, когда n = const и поэтому Mдин = 0,

Mэм = Mст.(3)

В дальнейшем индекс «эм» у Mэм будем опускать. Обычно M0 мал по сравнению с Mв, и поэтому приблизительно можно считать, что при установившемся режиме работы Mэм = M является полезным моментом на валу и уравновешивается моментом Mв. Можно также значение M0 включить в значение Mв.

Укажем, что если выразить P в киловаттах, а Ω — через число оборотов в минуту nм, то между P, nм и M в кгс × м будет существовать зависимость

Уравнение напряжения и тока

В двигателях направление действия э. д. с. якоря Eа противоположно направлению тока якоря Iа (смотрите статью «Принцип действия машины постоянного тока»), и поэтому Eа называется также противоэлектродвижущей силой якоря. Уравнение напряжения для цепи якоря двигателя можно записать следующим образом:

U = Eа + Rа × Iа.(4)

Здесь Rа – полное сопротивление цепи якоря [смотрите равенство (15) в статье «Общие сведения о генераторах постоянного тока»]. В режиме двигателя всегда U > Eа.

Из равенства (4) следует, что

(5)
Eа = cе × Фδ × n.(6)

Скорость вращения и механические характеристики

Решая уравнение (4) совместно с (6) относительно n, находим уравнение скоростной характеристики n = f(Iа) двигателя:

(7)
M = см × Фδ × Iа.(8)

Определив отсюда значение Iа и подставив его в (7), получим уравнение механической характеристики n = f(M) двигателя:

(9)

которое определяет зависимость скорости вращения двигателя от развиваемого момента вращения.

Вид механической характеристики n = f(M) или M = f(n) при U = const зависит от того, как с изменением момента M изменяется поток машины Фδ, и различен для двигателей с различными способами возбуждения. Это же справедливо для скоростных характеристик (смотрите статьи «Двигатели параллельного возбуждения», «Двигатели последовательного возбуждения», «Двигатели смешанного возбуждения»).

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.


источники:

http://poisk-ru.ru/s10787t4.html

http://kratko-obo-vsem.ru/articles/809-general-information-about-engines-of-a-direct-current.html