Уравнение напряженности симметричного магнитного поля имеет вид

Напряженность магнитного поля

Одним из фундаментальных понятий всех происходящих в природе электромагнитных явлений выступает магнитное поле, важнейшей характеристикой которого служит напряжённость.

Определение и формула напряжённости магнитного поля

Вокруг постоянного магнита или проводника с протекающим по нему электрическим током всегда присутствует магнитное поле. Эта одна из форм существования электромагнитного поля, естественного или искусственного происхождения. Как и всякая физическая величина, она имеет свои характеристики, одной из которых выступает напряжённость магнитного поля.

Из курса физики известно, что напряжённость магнитного поля H – это векторная (не скалярная, то есть определённым образом направленная в пространстве) величина, являющейся геометрической разницей между векторами магнитной индукции B и вектором намагниченности M.

Небольшое пояснение. Магнитная индукция B – это силовая векторная характеристика магнитного поля в конкретной точке пространства, которая характеризует силу воздействия на электрический заряд определённой величины, движущийся в этом поле.

Намагниченность M – это векторный показатель, демонстрирующий магнитное состояние тела, являющегося источником возникшего магнитного поля. Формулы, описывающие величину напряжённости магнитного поля в разных системах единиц измерения, выглядят следующим образом:

В системе СИ (Международной системе единиц):

где μ0 – магнитная постоянная, равная 4π10 −7 Гн/м, или менее точно 1,2566370614 10 -6 Н/А 2 . Единицей измерения напряжённости здесь выступает ампер на метр. 1А/м = 4π/1000Э = 0,01256637Э.

В системе СГС (сантиметр-грамм-секунда):

Здесь единицей измерения служит эрстед (Э). 1Э = 1000/4πА/м = 79,5775 А/м. При этом надо в обязательном порядке учитывать, что намагниченность зависит от магнитной проницаемости среды следующим образом:

M = ((μ-1)/4πμ)B, где μ – магнитная проницаемость, составляющая:

  • для диамагнетиков (стекло, медь, вода) – 0,99999;
  • для парамагнетиков (алюминий, воздух, кислород) – 1,0000;
  • для ферромагнетиков: никель – 1100; железо – 8000.

Физический смысл

Физический смысл напряжённости находится в прямой зависимости от среды формирования магнитного поля:

  • при её отсутствии или в вакууме, напряжённость и вектор магнитного поля – H и B, совпадают между собой с точностью до величины магнитной постоянной μ0;
  • в магнитной среде напряжённость – H представляет собой величину воздействия «внешнего» поля. Поля, имеющего место быть при отсутствии самого магнитного материала. То есть она соответствует вектору магнитной индукции – B внешних полей воздействия.

Закон Био-Савара-Лапласа

Главный закон магнитостатики, действие которого экспериментально было обнаружено в начале XIX века французскими учёными Био и Саваром, принял свою формулировку благодаря другому французскому исследователю маркизу де Лапласу. Именно он показал, что «магнитное поле любого тока может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока». Аналогичный вывод несколько позже был сделан исходя из двух уравнений Максвелла, составляющих совместно с выражениями для силы Лоренца теоретическую основу классической электродинамики.

В обобщённом виде закон выглядит следующим образом:

Пользуясь системой единиц СИ, для вакуума получаем:

где I – ток; dl – вектор, совпадающий и сонаправленный с протекающим током, r – модуль радиус-вектора, направленный в точку определения dB, α – угол между dl и r.

Циркуляция вектора напряжённости магнитного поля

В 1826 году ещё один французский учёный – Андре Мари Ампер сформулировал теорему о циркуляции магнитного поля (позже она также была подтверждена шотландцем Максвеллом), гласящую, что «Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающий контур циркуляции».

Из которой следует, что циркуляция вектора напряжённости магнитного поля соответствует сумме свободных токов, сцепленных с контуром. Связанные токи, образованные в магнетике под воздействием внешних полей, явно здесь не присутствуют.

Формулы

что в дифференциальной форме выглядит следующим образом:

где j – плотность тока, а c – скорость света в вакууме.

Напряжённость магнитного поля в цилиндрической катушке

Напряжённость магнитного поля в цилиндрической катушке прямо пропорциональна силе тока, зависящей, в свою очередь, от прикладываемого напряжения, а также сопротивления, определяемого числом витков катушки и обратно пропорциональна длине катушки.

В приведённой формуле:

  • I – сила протекающего тока;
  • n – число витков катушки;
  • L – длина цилиндрической катушки.

Вокруг прямолинейного проводника

Магнитное поле, окружающее прямолинейный проводник, напрямую зависит от величины и направления протекающего тока:

Где I – величина тока, а r – расстояние точки замера от проводника.

В центре витка с током

Здесь формула расчёта напряжённости практически аналогична случаю прямолинейного проводника:

Лишь R – обозначает радиус токопроводящего витка.

Определение напряжённости магнитного поля, измерение его величины в разных местах и условиях имеет большое практическое значение. Прежде всего, потому что все мы живём в магнитном поле земли и нередко подвергаемся воздействию внеземных магнитных полей.

Кроме того, данная величина важна с электротехнических позиций, вследствие электромагнитного воздействия на физические тела, попадающие в зону влияния магнитного поля. Так большое практическое значение находит использование тороидального магнитного поля, образованного катушкой с сердечником, внутри которой оно максимально; а вне её – равняется нулю.

Уравнения Максвелла

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

  1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
  2. В дальнейшем он вызывает появление магнитного поля.

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

  1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
  2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
  3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

Уравнение 3: Закон Гаусса для магнетизма

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

  1. Магнитных монополей не существует.
  2. Расхождение полей B или H всегда равно нулю в любом объёме.
  3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

Уравнение 4: Закон Ампера

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Это же уравнение в интегральной форме:

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

И это же уравнение в интегральной форме:

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Формула напряженности магнитного поля

Определение и формула напряженности магнитного поля

Напряженностью магнитного поля $\bar$ называют векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:

где $\bar$ – вектор магнитной индукции, $\mu_<0>=4 \pi \cdot 10^<-7>$ Гн/м(Н/А 2 )- магнитная постоянная, $\bar$ – вектор намагниченности среды в исследуемой точке поля.

Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:

В изотропной среде формула (1) преобразуется к виду:

где $\mu$ – скалярная величина, называемая относительной магнитной проницаемостью среды (или просто магнитной проницаемостью). В изотропной среде векторы напряженности магнитного поля и магнитной индукции совпадают по направлению.

Иногда напряженность магнитного поля $d \bar$ определяют как векторную величину, направленную по касательной к силовой линии поля, по модулю равной отношению силы (dF), с которой поле воздействует на единичный элемент тока (dl), который расположен перпендикулярно полю в вакууме, к магнитной постоянной:

Закон Био-Савара-Лапласа

Это важнейший в электромагнетизме закон. Он определяет вектор напряженности $d \bar$ в произвольной точке магнитного поля, которое создает в вакууме элементарный проводник длинны dl с постоянным током I:

где $d \bar$ – вектор элемента проводника, который по модулю равен длине проводника, направление совпадает с направлением тока; $\bar$ – радиус–вектор, который проводят от рассматриваемого элементарного проводника к точке рассмотрения поля; $r=|\bar|$ .

Вектор $d \bar$ – перпендикулярен плоскости, в которой находятся векторы $d \bar$ и $\bar$, и направлен так, что из его конца вращение вектора $d \bar$ по кратчайшему пути до совмещения с вектором $\bar$ происходило по часовой стрелке. Для нахождения направления вектора $d \bar$ можно использовать правило буравчика (Буравчик (винт) вращаем так, чтобы его поступательное движение совпадало с направлением тока, тогда направление, по которому вращается ручка винта, совпадает с направлением вектора напряженности поля, которое создает рассматриваемый ток).

Закон Био-Савара-Лапласа дает возможность вычислять величину полной напряженности магнитного поля, которое создает ток, текущий по проводнику любой формы.

Для нахождения полной напряженности магнитного поля, которое создает в исследуемой точке ток I, который течет по проводнику l, следует векторно суммировать все элементарные напряженности $d \bar$, порождаемые элементами проводника и найденные по формуле (4).

Единицы измерения

Основной единицей измерения момента силы в системе СИ является: [H]=А/м

Примеры решения задач

Задание. Чему равна напряженность (H) в центре кругового витка (R — радиус витка) с током I.

Решение. Каждый элементарный ток витка магнитное поле в центре окружности, напряженность которого направлена по положительной нормали к плоскости контура витка (рис.1). Поэтому, если элементарную напряженность поля найти по закону Био-Савара – Лапласа, то векторное сложение элементарных полей можно будет заменить на алгебраическое.

В соответствии с законом Био-Савара – Лапласа dH равно:

Применяя выражение (1.1) к нашему случаю, получим:


источники:

http://www.uznaychtotakoe.ru/uravneniya-maksvella/

http://www.webmath.ru/poleznoe/formules_21_25_naprjazhennost_magnitnogo_polja.php