Уравнение называется характеристикой электродвигателя постоянного тока

Механическая характеристика двигателя постоянного тока

Описание механистических свойств для двигателей, которые питаются от постоянного тока помогает точно узнать все свойства конкретного агрегата. Кроме того, такое описание поможет определить, соответствует ли привод всем современным требованиям.

Устройство электродвигателя постоянного тока

Особенность, объединяющая все электромоторы между собой – их строение. Каждый из них представлен ротором (элемент, приходящий в движение), расположенным наверху относительно статора (этот элемент всегда отсается неподвижным). Такие машины повсеместно используются в механизмах, ну чрезвычайно важна регулировка темпа с сохранением стабильной работы агрегата.

Конструктивно каждый из описываемых в статье приводов имеет следующий вид:

  • ротор, в строении которого присутствует много катушек со специфическим обмоточным покрытием (намотки);
  • статичный индуктор (статор), визуально имеет совершенно стандартный вид, однако характерен присутствием неких дополнений – полюсов;
  • щеточный коллектор в форме цилиндра, который расположен на валу (он имеет изоляцию из медных пластин);
  • контактные щетки (они достаточно надежно зафиксированы и используются для того, чтобы подвести достаточное количество электротока).

Контактные щетки в электроприводах с подобным питанием сделаны из графита или графита и меди. Из-за работы вала контактная группа замыкается и размыкается, что приводит к образованию искр. Передача ременного типа способствует поступлению некоторого количества энергии ко всем остальным частям агрегата.

Действие мотора

Для синхронных приборов характерна смена задач, выполняемых статором и ротором. Статор – неподвижная часть устройства, созданная, чтобы возбуждать поле, в ротор – вращающаяся часть, предназначен для преобразования энергии.

Работа якоря, при влиянии на него поля, осуществляется с помощью электродвижущей силы (ЭДС), а направление движения определяется правилом правой руки. С поворотом в другую сторону, поворачивается и ЭДС.

С помощью щеток коллектор осуществляет соединение с витковыми сторонам, что удаляет пульсирующее напряжение и приводит к образованию электротоковой величины. Пульсация снижается с помощью добавочных витков.

Механическая характеристика двигателя постоянного тока с параллельным возбуждением

Ротор привода (М) и катушка(LM) характерны последовательным включением. Они питаются от общего источника под буквой U. Электроток от ротора Iя – это и возбуждающий Iв.

Описанная выше схема определяет единственный фактор, отличающий прибор с последовательным видом подключения. Обмотка возбуждения двигателя с ПВ, обозначенная на рисунке как LM, имеет такое же сечение, как и катушка в якоре.

Когда ротор приходит во вращение, в его намотках действует электродвижущая сила (ЭДС) под буквой Е. На схеме видно, что ЭДС двигается навстречу к направлению U. В этом и заключается двигательный режим.

Величина Е вычисляется с помощью угловой скорости электропривода (ω), магнитного потока (Ф), конструктивного коэффициента (k=(p*N)/(2*π*a), в котором р – пары полюсов, N – активные проводники катушек, а – параллельные ветки обмоток ротора)):

Якорный электроток Ія и Е (а точнее, их направление) на рисунке выше изображено для режима машины.

Значения, допустимые для роторного тока, имеют некоторые ограничивающие условия. Это условия коммутации и прочности якоря. В целом, значение такого тока не должно быть выше стандартного Іян, чем в 2,5 раза, т.е.: Ія дополнительное ≤ 2,5 Iя ном.

Согласно уравнению равновесных напряжений, в действующем состоянии агрегата напряжение U, которое приложено к цепи ротора, уравновешивает снижение напряжения в этой цепи (ІяRяц) и ЭДС вращения Е:

Rяц = Rя+Rдп+Rко+Rв+Rп. Это формула суммарного сопротивления цепи якоря. Все пять показателей означают:

  • Rя – намотка якоря;
  • Rдп – намотка добавочных полюсов;
  • Rко – катушка компенсации;
  • Rв – обмотка возбуждения;
  • Rп – пусковой реостат.

В режиме, который уже становился, сопротивление катушки якоря вычисляют следующим образом:

Когда ЭДС равна нулю (как правило, в режиме пуска), ток якоря превышает допустимый диапазон значений. Чтобы ограничить пусковой электроток, используют пусковой реостат. Rп должна попадать в диапазон Iя пусковой ≤ Iя дополнительный.

Для получения аналитического выражения, с использованием которого можно вычислить параметры ДПТ, за основу нужно взять уравнение равновесия напряжений. Вместо Е (ЭДС вращения) туда нужно подставить ее значение и решить то, что получилось относительно скорости.

Итог – значение зависимости темпа привода ω от электротока Iя ω=f(Iя). Это выражение получило название электромеханической характеристики, а выглядит оно так:

ω = (U/kФ) — (Iя Rяц/kФ)

Последовательное включение якоря машины говорит о том, что Ф (магнитный поток, который создает упомянутая катушка) – это функция Iя. Ф = f(Iя) – это зависимость, получившая название «кривая намагничивания». Она нелинейная, характер по типу зоны насыщения.

Аналитическое описание это кривой пока не дели, так что аналитически точно описать

черты машины постоянного тока с ПВ невозможно.

Если пренебречь насыщением магнитной системы и сделать предположение о том, что существует линейная зависимость между магнитным потоком Ф и якорным электротоком Iя (коэффициент пропорциональности при этом – α), т.е. Ф=αIя, то вычисление вращающего момента будет выглядеть вот так:

Значение Ія при этом будет таким:

Если подставить в уравнение, которые вычисляет электромеханические значения значение якорного тока, то свойства будут называться механическими, а выглядеть так:

при этом, А=U/k*α; В= Rяц /(k*α) – константы.

Если проанализировать уравнение механистической характеристики, получим следующее:

  • ось ординат – асимптота кривой;
  • в области значений малых моментов ось ординат обладает большей крутизной.

Когда сопротивление пускового реостата равно нулю, и напряжение U равно стандартному напряжению, рабочие параметры мотора естественная.

Чтобы построить такую характеристику, достаточно использовать универсальные параметры, которые, зачастую, приводятся в каталоге серии. Они представлены в виде зависимостей n=f(Iя), а также М= f(Iя), единицы при этом относительные. Если вы знаете номинальные значения привода, его свойства легко определить в абсолютной величине.

Чтобы построить такую характеристику, достаточно использовать универсальные параметры, которые, зачастую, приводятся в каталоге серии. Они представлены в виде зависимостей n=f(Iя), а также М= f(Iя), единицы при этом относительные. Если вы знаете номинальные значения привода, его свойства легко определить в абсолютной величине.

Особенность естественных черт – резкий рост скорости с одновременным уменьшением момента сопротивления (Мс). Эта особенность является главной причиной того, почему ДПТ с ПВ никогда не включают, когда момент сопротивления меньше 15/20% от Мн. Ведь в этом случае темп мотора может быть выше, чем ω дополнительное = 2,5ω номинальное.

Объясняется эта особенность во время рассмотрения процессов в приводе, когда нагрузка начинает уменьшаться. Например, машина, работая в точке А на естественных параметрах (скорость = ω1). Если Мс1 уменьшиться до Мс2, то появится положительный момент МД, а сам электродвигатель начнет действовать с большей скоростью.

В ДПТ с последовательным возбуждением ЭДС вращения – это функция:

  • скорости, которая увеличивается (ω);
  • уменьшающегося потока (Ф).

Результат – Е, а вместе с ней и ток якоря, а также М, не будут претерпать существенные изменения по мере нарастания темпа. Это сохранит МД и только способствует дальнейшему нарастанию темпа работы машины.

А если Rп принимает любое значение, кроме нуля, то снижение скорости (статическое, Δωс) станет гораздо заметнее, чем на естественных параметрах в условиях одинакового значения обоих моментов. Наклон характеристики реостата при этом будет к оси абсцисс.

Механические свойства двигателя, возбуждение которого независимо

В электроприводе с независимым включением катушка якоря подключается к отдельному источнику питания. В таком случает к цепи этой катушки включают реостат регулирования (rрег). К цепи якоря при этом подключают реостат пуска или добавочный реостат (Rп).

Характерное отличие двигателей с отдельным подключением заключается в независимости Iв от Iя. Это связано с тем, что намотка возбуждения получает отдельное питание.

Уравнение, с помощью которого описывают ДПТ с отдельным включением намотки, выглядит следующим образом:

В этом уравнении n0 означает частоту, с которой вращается вал во время холостого хода, а Δn показывает то, как изменяется эта частота при возникновении нагрузки на мотор.

Это уравнение доказывает прямолинейность параметров ДПТ с НВ, а также факт пересечения ими оси ординат в точке n0 (холостой ход).

В то же время Δn (величина изменения частоты вращения вала машины при росте нагрузки на него) прямо пропорционально сопротивлению якорной цепи Ra =∑R + R добавочное.

Следовательно, когда сопротивление якорной цепи наиболее низкое Ra = ∑R, т. е. R добав. = 0, величина перепада частоты вращения вала Δn тоже будет наименьшим.

Параметры при этом будут жесткими (график 1).

Как мы уже узнали из предыдущего раздела, естественными свойствами электромотора переменного тока называют такие характеристики, которые были получены при номинальном напряжении на намотках якоря и намотках возбуждения. Добавочное сопротивление при этом должно отсутствовать. Это показано на графике 1, где R добав. = 0.

При изменении хотя бы одного из параметров, приведенных ниже, т.е. при несоответствии напряжения на катушках (якоря или возбуждения) их значениям, или когда сопротивление якорной цепи меняется посредством введения R добав., свойства становятся искусственными.

Такие параметры, которые были получены посредством введения в якорную цепь добавочного сопротивления, еще называют реостатными (графики 2, 3).

Оценивание регулировочных черт ДПТ опирается на парметры n = f(М). Если момент нагрузки на вал не изменяется, а добавочное сопротивление растет, частота будет уменьшаться.

Вычисление добавочного R, помогающее получить механические признаки, что соответствуют необходимой частоте, с которой вращается вал, при некоторой нагрузке, как правило, номинальной для ДПТ с НВ происходит следующим образом:

Как видно, формула требует знания напряжения в цепи якоря, В; электротока якоря при той нагрузке, которая была задана, А; требуемой частоты работы вала агрегата, оборотов/минута; частоты работы вала при холостом ходе, оборотов/минута.

Частота вращения вала при холостом ходе – пограничная частота. Если ее превысить, то прибор автоматически перейдет в режим работы генератора. Такая частота выше стандартной на столько, на сколько величина стандартного напряжения выше номинальной электродвижущей якорной силы Eя. Нагрузка на машину при этом также носит номинальное значение.

Форма характеристики зависит от величины Ф (основной магнитный поток). Если R резистора растет, то Ф уменьшается, а частота работы вала во время холостого хода растет. Вместе с этим растет и разница между частотами вращения вала.

Такой процесс неизбежно приводит к тому, что жесткость механической характеристики привода растет.

При изменении напряжения в якорной обмотке (с условием неизменности Rдоб и Rрег), следом измениться только n0. Перепад частоты будет таким же. Итог – смещение механистических параметров по оси ординат, но сохранение параллельности между ними.

Созданные условия считаются наиболее благоприятными для того, чтобы регулировать частоту вала агрегата изменением напряжения, которое подводят к якорной цепи. Этот способ регулирования частоты получил самое больше распространение во всем мире.

Механические параметры мотора со смешанным возбуждением

1. Принципиальная схе­ма включения двигателя посто­янного тока смешанного воз­буждения. 2. Зависимость момен та М и угловой скорости ω*, от тока якоря I*, для двига­теля постоянного тока смешан­ного возбуждения (в относитель­ных единицах).

В машине постоянного тока со смешанным возбуждением, как понятно из названия, есть две намотки: одна независимая (ОВ2), а вторая последовательная (ОВ1). Такая конструкция влияет и на свойства привода. Они находятся как бы посередине относительно ДПТ с последовательным и независимым возбуждением.

У электропривода со смешанным возбуждением нет аналитического выражения, что связано с изменением магнитного потока в случае уменьшения или увеличения нагрузки. Следовательно, расчет параметров обычно происходит с использованием естественной, которую можно найти в каталоге. Эти парметры можно увидеть на рисунке ниже.

Электромотор со СВ, в отличие от ДПТ с ПВ, обладает темпом идеально холостого хода в качестве конечного значения. Этот темп определяет только магнитный поток, возникший от магнитодвижущей силы намотка, которая подключена отдельно (Ф0). Вычисляется она так:

Соотношение магнитодвижущей силы независимых и последовательных обмоток отличается. Это значение зависит от серии, в которой был выпущен агрегат. Самым распространенным соотношением называют то, при котором МДС двух обмоток равны при условии номинального электротока.

Темп у электропривода постоянного тока со СВ сильно изменяется в условиях малой нагрузки, а если увеличивать ее постепенно, то уменьшаться темп будет практически по прямой, аналогично двигателю с отдельным подключением обмоток.

Связано это с тем, что большие нагрузки приводят к насыщению агрегата. В таком случае даже с изменением МДС катушек, подключенной последовательно, изменения магнитного потока совершенно не значительны.

Чтобы рассчитать реостатные свойства можно применять метод построения характеристики для двигателя постоянного электротока с параллельным возбуждением обмоток, который мы рассмотрели выше.

Торможение двигателя такого типа может проходить с помощью трех способов:

  • когда энергия отдается в сеть;
  • динамический;
  • противовключение.

В первом случае, когда энергия отдается в сеть, электротоки в якоре и последовательно подключенной намотке меняют направления своего движения, что может привести к размагничиванию агрегата. Во избежание таких последствий, когда последовательная обмотка переходит через угловую скорость со0, ее шунтируют. Это делает прямыми те параметры, которые находятся в квадранте II на рисунке ниже.

Свойства при динамичном торможении выглядят так же, потому что такое торможение происходит, как правило, только в случае, когда включена одна параллельная катушка. Магнитный поток Ф при этом является постоянным.

Когда происходит торможение посредством противовключения, признаки такого способа нелинейные. На это влияет изменяющаяся МДС в намотке, подключенной последовательно с изменяющейся нагрузкой.

Бытовое и производственное применение подобных двигателей

Машины с упомянутым типом питания, в независимости от типа подключения обмотки, получили широкое распространение во всем мире. На производствах его используют в следующих устройствах и приборах:

  • грузоподъемные краны на разных тяжелых производствах;
  • в приводах, которые требуют широкого диапазона регулирования скорости и высокого пускового момента (ими могут быть установки для подъема, различные станы (прокатные и обжимные);
  • приводы в механизмах, обеспечивающих напор, натяжение или для поворота экскаваторов;
  • в тяговых электромоторах (тепловозный и теплоходный транспорт, а также работающие в карьерах транспортные средства по типу самосвалов);
  • электростартеры в автомобилях и тракторах. Чтобы уменьшить номинальное напряжение в стартере автомобиля, использую ДПТ, которые оборудованы четырьмя щетками. Они способствуют значительному уменьшению комплексного сопротивления в якоре. В статоре при этом четырехполюсной, а сила пускового электротока в таких стартерах составляет 200 А. Они действуют в кратковременном режиме.

Двигатели с малой мощностью обычно ставят в:

  • игрушки
  • компьютерную технику
  • организационную (офисную) технику
  • инструменты с аккумуляторами.

Электродвигатель постоянного тока

Основные параметры электродвигателя постоянного тока

Постоянная момента

,

  • где M — момент электродвигателя, Нм,
  • – постоянная момента, Н∙м/А,
  • I — сила тока, А

Постоянная ЭДС

Направление ЭДС определяется по правилу правой руки. Направление наводимой ЭДС противоположно направлению протекающего в проводнике тока.

Наведенная ЭДС последовательно изменяется по направлению из-за перемещения проводников в магнитном поле. Суммарная ЭДС, равная сумме ЭДС в каждой катушке, прикладывается к внешним выводам двигателя. Это и есть противо-ЭДС. Направление противо-ЭДС противоположно приложенному к двигателю напряжению. Значение противо-ЭДС пропорционально частоте вращения и определяется из следующего выражения: [1]

,

  • где — электродвижущая сила, В,
  • – постоянная ЭДС, В∙с/рад,
  • — угловая частота, рад/с

Постоянные момента и ЭДС в точности равны между собой KT = KE. Постоянные KT и KE равны друг другу, если они определены в единой системе едениц.

Постоянная электродвигателя

Одним из основных параметров электродвигателя постоянного тока является постоянная электродвигателя Kм. Постоянная электродвигателя определяет способность электродвигателя преобразовывать электрическую энергию в механическую.

,

  • где — постоянная электродвигателя, Нм/√ Вт ,
  • R — сопротивление обмоток, Ом,
  • – максимальный момент, Нм,
  • — мощность потребляемая при максимальном моменте, Вт

Постоянная электродвигателя не зависит от соединения обмоток, при условии, что используется один и тот же материал проводника. Например, обмотка двигателя с 6 ветками и 2 параллельными проводами вместо 12 одиночных проводов удвоят постоянную ЭДС, при этом постоянная электродвигателя останется не изменой.

Жесткость механической характеристики двигателя

,

  • где — жесткость механической характеристики электродвигателя постоянного тока

Напряжение электродвигателя

Уравнение баланса напряжений на зажимах двигателя постоянного тока имеет вид (в случае коллекторного двигателя не учитывается падение напряжения в щеточно-коллекторном узле):

,

Уравнение напряжения выраженное через момент двигателя будет выглядеть следующим образом:

Соотношение между моментом и частотой вращения при двух различных напряжениях питания двигателя постоянного тока неизменно. При увеличении частоты вращения момент линейно уменьшается. Наклон этой функции KTKE/R постоянный и не зависит от значения напряжения питания и частоты вращения двигателя.

Благодаря таким характеристикам упрощается управление частотой вращения и углом поворота двигателей постоянного тока. Это характерно для коллекторных и вентильных двигателей постоянного тока, что нельзя сказать о двигателях переменного тока и шаговых двигателях [1].

Мощность электродвигателя постоянного тока

Упрощенная модель электродвигателя выглядит следующим образом:

  • где I – сила тока, А
  • U — напряжение, В,
  • M — момент электродвигателя, Н∙м
  • R — сопротивление токопроводящих элементов, Ом,
  • L — индуктивность, Гн,
  • Pэл — электрическая мощность (подведенная), Вт
  • Pмех — механическая мощность (полезная), Вт
  • Pтеп — тепловые потери, Вт
  • Pинд — мощность затрачиваемая на заряд катушки индуктивности, Вт
  • Pтр — потери на трение, Вт

Механическая постоянная времени

Механическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое частота вращения ненагруженного электродвигателя достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

  • где — механическая постоянная времени, с

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмотками Рисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.


источники:

http://engineering-solutions.ru/motorcontrol/dcmotor/

http://www.asutpp.ru/elektrodvigatel-postoyannogo-toka.html