Уравнение не имеет решений что это значит

Какое уравнение не имеет корней? Примеры уравнений

Решение уравнений в математике занимает особое место. Этому процессу предшествует множество часов изучения теории, в ходе которых ученик узнает способы решения уравнений, определения их вида и доводит навык до полного автоматизма. Однако далеко не всегда поиск корней имеет смысл, так как их может попросту не быть. Существуют особые приемы нахождения корней. В данной статье мы разберем основные функции, их области определения, а также случаи, когда их корни отсутствуют.

Какое уравнение не имеет корней?

Уравнение не имеет корней в том случае, если не существует таких действительных аргументов х, при которых уравнение тождественно верно. Для неспециалиста данная формулировка, как и большинство математических теорем и формул, выглядит очень размытой и абстрактной, однако это в теории. На практике все становится предельно просто. Например: уравнение 0 * х = -53 не имеет решения, так как не найдется такого числа х, произведение которого с нулем дало бы что-то, кроме нуля.

Сейчас мы рассмотрим самые базовые типы уравнений.

1. Линейное уравнение

Уравнение называется линейным, если его правая и левая части представлены в виде линейных функций: ax + b = cx + d или в обобщенном виде kx + b = 0. Где а, b, с, d — известные числа, а х — неизвестная величина. Какое уравнение не имеет корней? Примеры линейных уравнений представлены на иллюстрации ниже.

В основном линейные уравнения решаются простым переносом числовой части в одну часть, а содержимого с х — в другую. Получается уравнение вида mx = n, где m и n — числа, а х — неизвестное. Чтобы найти х, достаточно разделить обе части на m. Тогда х = n/m. В основном линейные уравнения имеют только один корень, однако бывают случаи, когда корней либо бесконечно много, либо нет вовсе. При m = 0 и n = 0 уравнение принимает вид 0 * х = 0. Решением такого уравнения будет абсолютно любое число.

Однако какое уравнение не имеет корней?

При m = 0 и n = 0 уравнение не имеет корней из множества действительных чисел. 0 * х = -1; 0 * х = 200 — эти уравнения не имеют корней.

2. Квадратное уравнение

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0 при а = 0. Самым распространенным способом решения квадратного уравнения является решение через дискриминант. Формула нахождения дискриминанта квадратного уравнения: D = b 2 — 4 * a * c. Далее находится два корня х1,2= (-b ± √D) / 2 * a.

При D > 0 уравнение имеет два корня, при D = 0 — корень один. Но какое квадратное уравнение не имеет корней? Пронаблюдать количество корней квадратного уравнения проще всего по графику функции, представляющем собой параболу. При а > 0 ветви направлены вверх, при а 2 – 8x + 72 = 0 не имеет корней, так как имеет отрицательный дискриминант D = (–8) 2 – 4 * 1 * 72 = -224. Это значит, что парабола не касается оси абсцисс и функция никогда не принимает значение 0, следовательно, уравнение не имеет действительных корней.

3. Тригонометрические уравнения

Тригонометрические функции рассматриваются на тригонометрической окружности, однако могут быть представлены и в декартовой системе координат. В данной статье мы рассмотрим две основные тригонометрические функции и их уравнения: sinx и cosx. Так как данные функции образуют тригонометрическую окружность с радиусом 1, |sinx| и |cosx| не могут быть больше 1. Итак, какое уравнение sinx не имеет корней? Рассмотрим график функции sinx, представленный на картинке ниже.

Мы видим, что функция является симметричной и имеет период повторения 2pi. Исходя их этого, можно говорить, что максимальным значением этой функции может быть 1, а минимальным -1. Например, выражение cosx = 5 не будет иметь корней, так как по модулю оно больше единицы.

Это самый простой пример тригонометрических уравнений. На самом деле их решение может занимать множество страниц, в конце которых вы осознаете, что использовали неправильную формулу и все нужно начинать сначала. Порой даже при правильном нахождении корней вы можете забыть учесть ограничения по ОДЗ, из-за чего в ответе появляется лишний корень или интервал, и весь ответ обращается в ошибочный. Поэтому строго следите за всеми ограничениями, ведь не все корни вписываются в рамки задачи.

4. Системы уравнений

Система уравнений представляет собой совокупность уравнений, объединенных фигурной или квадратной скобками. Фигурные скобки обозначают совместное выполнение всех уравнений. То есть если хотя бы одно из уравнений не имеет корней или противоречит другому, вся система не имеет решения. Квадратные скобки обозначают слово «или». Это значит, что если хотя бы одно из уравнений системы имеет решение, то вся система имеет решение.

Ответом системы с квадратными скобками является совокупность всех корней отдельных уравнений. А системы с фигурным скобками имеют только общие корни. Системы уравнений могут включать абсолютно разнообразные функции, поэтому такая сложность не позволяет сказать сразу, какое уравнение не имеет корней.

Обобщение и советы по нахождению корней уравнения

В задачниках и учебниках встречаются разные типы уравнений: такие, которые имею корни, и не имеющие их. В первую очередь, если у вас не получается найти корни, не думайте, что их нет совсем. Возможно, вы совершили где-нибудь ошибку, тогда достаточно лишь внимательно перепроверить ваше решение.

Мы рассмотрели самые базовые уравнения и их виды. Теперь вы можете сказать, какое уравнение не имеет корней. В большинстве случаев сделать это совсем не трудно. Для достижения успеха в решении уравнений требуется лишь внимание и сосредоточенность. Практикуйтесь больше, это поможет вам ориентироваться в материале гораздо лучше и быстрее.

Итак, уравнение не имеет корней, если:

  • в линейном уравнении mx = n значение m = 0 и n = 0;
  • в квадратном уравнении, если дискриминант меньше нуля;
  • в тригонометрическом уравнении вида cosx = m / sinx = n, если |m| > 0, |n| > 0;
  • в системе уравнений с фигурными скобками, если хотя бы одно уравнение не имеет корней, и с квадратными скобками, если все уравнения не имеют корней.

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Исследование уравнений в математике с примерами решения

Исследовать уравнение – это значит указать, при каких значениях параметра какое именно решение имеет данное уравнение/неравенство.

Что значит исследовать уравнение

Исследовать уравнение — значит рассмотреть все особые случаи, которые могут представиться при решении его, и уяснить значение этих случаев для той задачи, из условий которой уравнение составлено.

Исследование уравнений первой степени с одним неизвестным

Вы видели раньше, что уравнение первой степени с одним неизвестным после надлежащих преобразований (раскрытие скобок, освобождение от знаменателей, перенесение неизвестных членов в одну часть уравнения, а известных в другую и приведение подобных членов) приводится к такому простейшему виду:
ах = b,
где числа а и b могут быть положительными, отрицательными и равными нулю.

Рассмотрим, какого рода решения получает это уравнение при различных численных значениях а и b .

Положительное решение: Такое решение получается тогда, когда числа а и b оба положительны или оба отрицательны. Пусть, например, Зх = 6 или —Зх = —6. Тогда мы получим:
или

Положительное решение, удовлетворяя уравнению, вместе с тем удовлетворяет и задаче, из условий которой уравнение выведено, если только в уравнении выражены все условия задачи. Но иногда случается, что не все условия задачи выражены уравнением; тогда положительное решение может и не удовлетворять задаче. Приведём этому пример.

Задача:

Рабочий кружок, состоящий из 20 человек (взрослых и подростков), устроил сбор на покупку книг для библиотеки, причём каждый взрослый внёс по 3 руб., а каждый подросток—по 1 руб. Сколько было в этом кружке взрослых и сколько подростков, если весь сбор составил 35 руб.?

Обозначим число взрослых буквой х; тогда число подростков будет 20 — х, и сбор со взрослых окажется Зх руб., а с подростков (20 — х) руб. Следовательно, уравнение будет
3x+(20 — x)=35, откуда х =

Это положительное решение удовлетворяет уравнению, но не удовлетворяет задаче, так как по смыслу задачи искомое число должно быть целым. Различие между уравнением и задачей произошло здесь оттого, что уравнение не содержит в себе подразумеваемого в задаче требования, чтобы искомое число было целым. Предложенная задача не имеет решений.

Отрицательное решение: Такое решение получается из уравнения ax=b тогда, когда числа а и b имеют противоположные знаки. Пусть, например,
5х = — 15 или —5x=15;
тогда:
или

Чтобы показать, в каком смысле надо понимать отрицательное решение x=—m, обратим внимание на то, что если число —m удовлетворяет данному уравнению αx=b, то равенство —am = b должно быть тождеством; значит, тогда положительное число m удовлетворяет другому уравнению: — ax=b, которое получается из данного, если в нём заменим х на — х. Основываясь на этом замечании и получив отрицательное решение х=— m, мы можем поступить так: изменим в уравнении х на — х; от этого получим новое уравнение, которое должно иметь положительное решение х=m. Новое уравнение, конечно, не соответствует предложенной задаче; всматриваясь в него, мы легко определим, как надо изменить задачу, чтобы она имела положительное решение х=m.

Для примера приведём такую простую задачу.

Отцу 40 лет, а сыну 10 лет. Через сколько лет отец будет в 7 раз старше сына?

Обозначим искомое число буквой х.
Очевидно, что через х лет отцу будет 40+х, а сыну 10+x лет. По условию:
40+x=7 (10+x), откуда x=— 5.

Заменив в уравнении х на — х, получим новое уравнение 40 — x = 7 (10 — х), которое отвечает той же задаче, но с изменённым вопросом, а именно, вопрос должен быть такой: сколько лет назад отец был в 7 раз старше сына?

Из примеров, подобных указанному, можно усмотреть, что отрицательное решение надо понимать в смысле, противоположном тому, в каком понималось бы положительное решение; так, если положи тельное решение означает время после некоторого события, то отрицательное означает время раньше этого события; если первое означает доход, то второе — расход и т. п. Если же случается, что по смыслу задачи неизвестное число х нельзя понимать в двух противоположных смыслах, то тогда отрицательное решение означает, что задача не имеет решения.

Нулевое решение: Положим, что в уравнении ах=b число b окажется нулём, а коэффициент а будет какое-нибудь число, отличное от нуля. Пусть, например, уравнение будет 4х=0. Значит, произведение 4х должно равняться нулю. Но произведение равняется нулю только тогда, когда какой-нибудь сомножитель равен нулю; следовательно, сомножитель х должен равняться нулю. И из формулы видно, что х=0.

Задача:

Какое число надо прибавить к числителю и знаменателю дроби , чтобы получить ?

Обозначив искомое число буквой х, мы получим уравнение:

откуда:
26+2x=26+x; х=0.
Это значит, что дробь сама равна .

Случай, когда уравнение не имеет корня

Пусть в уравнении ax=b число а окажется нулём, а число b не равно нулю; например, 0∙x = 10. Такое равенство невозможно, так как, какое бы число мы ни взяли для х, произведение 0∙x равно нулю, а не 10.

Пусть, например, уравнение будет такое:

Решаем его, как обыкновенно (общий знаменатель 6):
Зх — 24+2x = 42+5x,
т. е.
5x = 66+5x, или 5х — 5x=66.

Какое бы число х мы ни взяли, разность 5х — 5х всегда равна нулю, а не числу 66. Значит, предложенное уравнение не имеет корня.

Если бы мы, не заметив, что коэффициент а равен нулю, разделили па него обе части уравнения ax=b, то получили бы для х такую формулу: . Обнаружив затем, что α=0, мы из этой формулы нашли бы .

Так как деление на 0 невозможно, то из последней формулы мы пришли бы к заключению, что при α=0 уравнение ax = b не имеет корня (значит, и задача не имеет решений).

Но недостаточно ограничиться только этим одним заключением. Полезно указать ещё на одно важное обстоятельство, для уяснения которого мы предварительно должны рассмотреть, как изменяется дробь, когда знаменатель её неограниченно уменьшается, а числитель, остаётся неизменным.

Как надо понимать равенство . Пусть в дроби знаменатель всё более и более уменьшается по абсолютной величине, приближаясь неограниченно к нулю, а числитель остаётся неизменным.

Положим, например, что знаменатель n получает такие уменьшающиеся значения:
n = 0,l; n = 0,01; n = 0,001; n = 0,0001 и т. д.

Тогда дробь будет получать такие возрастающие значения:
и т.д.

Отсюда видно, что если числитель остаётся неизменным, а знаменатель неограниченно приближается к нулю, то абсолютная величина дроби (члены которой могут быть и отрицательными числами) будет неограниченно увеличиваться. Это обстоятельство кратко-выражается в письменной форме так:
,
где знак ∞ выражает „бесконечность». Запись эту нельзя понимать буквально, так как деление на 0 невозможно; она только кратко означает, что абсолютная величина дроби неограниченно увеличивается (или, как иногда говорят, стремится к бесконечности), если знаменатель неограниченно приближается к нулю, а числитель остаётся неизменным, причём сама дробь остаётся или положительной, или отрицательной (смотря по тому, имеет ли знаменатель, стремящийся к нулю, одинаковый знак с числителем или противоположный).

Теперь мы можем дополнить исследования так:

При а = 0 уравнение ах = b не имеет корня, но если а не равно 0, а только приближается к 0 всё ближе и ближе, то абсолютная величина корня возрастает неограниченно.

Неопределённое решение: Если в уравнении ax=b оба числа а и b окажутся нулями, то уравнение обращается в тождество: 0∙x = 0, верное при всяком значении х. Значит, в этом случае уравнение становится неопределённым, т. е. оно допускает бесчисленное множество произвольных решений.

Если бы мы, не заметив, что α = 0, разделили обе части уравнения на а, то для х получили бы дробь , которая при b=0 и при а = 0 обращается в выражение . Такое выражение не имеет никакого численного значения.

Задача:

Какое число надо прибавить к числителю и знаменателю дроби у, чтобы эта дробь сделалась равной числу m?

Обозначив искомое число буквой х, получим такое уравнение:

откуда:
a+x=bm+mx; х — mx=bm- a; (1-m)x = bm-a.

Если m≠l, то

Допустим, что m=1, а разность bа есть какое-нибудь число, отличное от нуля (положительное или отрицательное). Тогда для х получим:
0∙x=b — а.

Отсюда мы можем заключить, что при m = 1 и b ≠ а не существует никакого числа х, удовлетворяющего вопросу задачи, но если m не равно 1, а только приближается к 1, то абсолютная величина числа х увеличивается неограниченно.

Если же при m=l ещё b=a, то для х получается формула:
0∙x=0,
из которой можно заключить, что всякое число х удовлетворяет вопросу задачи (и действительно: дробь при всяком числе х равна 1).

Графическое истолкование решения уравнения ax=b:
Обозначим левую часть уравнения буквой y₁ и правую часть — буквой y₂ и построим на одном и том же чертеже графики двух функций: y₁ =ax и y=b.

График первой функции есть прямая, проходящая через начало координат и через точку (1, а); график второй функции есть прямая, параллельная оси х-ов и отсекающая от оси у-ов отрезок ¢ ‘(на чертеже 31 мы изобразили случай, когда а>0 и b>0; предоставляем самим читателям сделать чертежи для случаев, когда 1) α>0, но 0 и 3) α Черт. 31.

Пользуясь таким графическим изображением, мы можем наглядна
истолковать все случаи решения уравнения ax = b. Ограничимся рассмотрением двух случаев: 1) уравнение не имеет решения и 2)уравнение имеет неопределённое решение.

1) Уравнение не имеет решений (черт. 32). Уменьшая численную величину коэффициента а, мы заставляем прямую у=ах всё более и более приближаться к оси х-ов. Тогда точка M, в которой прямая у=b пересекается с прямой y=αx, всё более и более удаляется направо, проходя через положения M₁, M, M₃ и т. д., причём абсцисса OA точки пересечения беспредельно увеличивается, принимая значения OA₁, OA₂ , OA₃ и т. д. Значит, когда а неограниченна уменьшается, приближаясь к нулю, корень уравнения ax = b неограниченно возрастает (что можно выразить так: ).

Черт. 32.

2) Неопределённое решение получается, как мы видели, при a = b=0. Чтобы истолковать этот случай графически, вообразим, что на чертеже 32 величина b уменьшается, приближаясь к нулю; тогда прямая y₂=b, оставаясь параллельной оси х-ов, будет всё более и более приближаться к этой оси и при b=0 сольётся с нею. C другой стороны, прямая y₁ = ax при а=0 обратится тоже в ось х-ов, и тогда две прямые y₂ =b и y₁=ax совпадут с осью х-ов, и, следовательно, каждую из точек этой оси можно считать за точку пересечения; значит, величина корня остаётся неопределённой.

Исследование системы двух уравнений первой степени с двумя неизвестными

Общие формулы: Мы видели что система двух уравнений:
ax+by=с и a’x+b’y=c’
даёт следующие формулы для неизвестных:
(ab’— a’b)x=(b’c — bс’); (ab’ — a’b) y=(ac’ — а’с). (1)

Если ab’ — a’b≠0, то
(2)

Исследование: Исследование этих формул подразделим на два случая:
1) Общий знаменатель ab’ — а’b не равен нулю.
В этом случае система имеет единственное решение. О значении этого решения для задачи, из условий которой составлена рассматриваемая система, здесь может быть сказано то же самое, что говорилось раньше при исследовании одного уравнения с одним неизвестным.

2) Общий знаменатель ab’— a’b=0. В этом случае числители в формулах (2) могут быть как отличными от нуля, так и равными нулю. Докажем, что если ни одно из чисел a, a’, b, b’ не равно нулю, то будет иметь место одно из следующих двух предположений.

а) Если один из числителей для х или для у в формулах (2) равен дулю, то и другой равен нулю.

Пусть, например, числитель для х равен нулю, для чего необходимо, чтобы:
cb’=c’b; и, кроме того, дано, что ab’=a’b.

Умножив левую часть первого из этих равенств на правую часть второго, а правую — на левую второго, получим:
cb’a’b=c’bab’, откуда cb’a’b — c,bab, =0,
и, следовательно,
bb’ (а’с — ac’)=0.

Так как числа b и b’ не равны нулю, то последнее равенство возможно только тогда, когда а’с — ac’=0, т. е. числитель для у равен нулю.

Так же, если допустим, что числитель для у в формулах (2) равен нулю (т. е. если ac’ = a’c и ab’=a’b), то получим:
ас’a’b=a’cab’ ; aa’ (c’b — cb’)=0; c’b — cb’=0.

б) Если один из числителей для х или для у в формулах (2) не равен нулю, то и числитель для другого неизвестного также не равен нулю.

Действительно, если бы для одного из неизвестных числитель был бы равен нулю, то, по доказанному, числитель для другого неизвестного также был бы равен нулю.

Если числители для обоих неизвестных в формулах (2) равны нулю, то это означает неопределённость задачи. Действительно, умножив все члены первого уравнения на b’, а члены второго на b (что можно сделать, так как, по предположению, числа b и b’ не равны 0), получим:
ab’x+bb’y=cb’ и a’bx+b’by=c’b. [А]

Но ab’ = a’b и cb’ =c’b; следовательно, оба уравнения [А] представляют собой в сущности одно уравнение с двумя неизвестными, а в этом случае, как мы знаем, неизвестные могут иметь бесчисленное множество значений.

Если числители в формулах (2) не равны нулю, a ab’ — a’b=0, то это означает несовместимость уравнений. В самом деле, если ab’ = a’b , a cb’c’b , то левые части системы [А] имеют одинаковые численные величины, а правые — разные; значит, уравнения несовместимы, и задача не имеет решения.

Полезно заметить, что в случае, когда уравнения (1) принимают вид 0x=0, 0y=0, то это ещё не значит, что обоим неизвестным можно давать произвольные значения. Выбрав значения одного из них произвольно, мы тем самым определим другое неизвестное, найдя его из какого-нибудь одного из двух данных уравнений.

Итак, если ab’—a’b≠0, то решение системы:
ax+by=c, a’x+b’y=c’
получается по общим формулам; если же ab’ — a’b=0, но ни одно из чисел a, b, a’, b’ не обращается в нуль, то система или имеет бесчисленное множество решений, или ни одного решения. Случай, когда ab’—a’b=0 и, кроме того, какое-либо из чисел a, b, a’, b’ равно нулю, мы не рассматриваем.

Исследование квадратного уравнения

Исследование формул: Корни полного квадратного уравнения αx²+bx+c=0 выражаются, как мы знаем, формулами:

Число а мы будем считать положительным (если бы оно было отрицательное, мы могли бы переменить знаки перед всеми членами уравнения на противоположные; нулём число а быть не может, так как в противном случае уравнение перестало бы быть квадратным, оно обратилось бы в уравнение первой степени).

Мы говорили ранее, что корни квадратного уравнения будут оба вещественные или оба мнимые в зависимости от того, окажется ли дискриминант b² — 4ас величиной положительной или отрицательной.

Рассмотрим этот вопрос подробнее: 1) Если b² — 4ас > 0 , то есть некоторое положительное число (вспомним, что здесь знак обозначает арифметическое значение радикала); следовательно, корни x₁ и x₂ будут вещественные и неравные. При этом могут представиться три случая:

а) Оба корня — положительные числа, если и , для чего необходимо, чтобы число b было отрицательное (при положительном b корень x₂ имел бы отрицательное значение) и чтобы абсолютная величина b превосходила

б) Оба корня — отрицательные числа, если и , для чего необходимо, чтобы b было числом положительным (при отрицательном b корень x₁ был бы, очевидно, положительным) и, кроме того, чтобы удовлетворялось неравенство:

в) Один корень — положительный, а другой — отрицательный, когда b, будучи положительным или отрицательным, по абсолютной величине меньше .

2) Если b² —4αc=0, то корни будут вещественные и равные: , положительные или отрицательные (или равны нулю при b=0).

3) Если b² —4αc Черт. 33.

Подобно этому найдём, что точка С, отстоя от источника света В на (d— х) м, будет иметь освещённость от В в люксов. Вопрос задачи требует, чтобы

откуда:
a(d — x)²=bx², т. е. ad² — 2αdx+αx²— bx2=0,
(α — b)x
² — 2adx+ad²=0.

Так как коэффициент при х делится на 2, то

Следовательно,

Исследуем эти формулы. Так как а и b — числа положительные, то мнимых решений в этой задаче не будет.

1) Если a>b, то оба корня положительны, причём, так как

Второе решение (x₂ d) ему противоречит. Чтобы принять или отвергнуть это решение, мы должны рассмотреть, какое уравнение получится, если сделаем предположение, что искомая точка находится направо от В (например, в C₁) на расстоянии х от А. Тогда по-прежнему освещённость её источником А будет от источника В точка C₁ находится на расстоянии х — d; поэтому освещённость её этим источником будет и уравнение будет:
(2)

Сравнивая это уравнение с уравнением (1), находим, что они одинаковы, так как
(d-x)²=(x-d)²∙

Заметив это, мы можем утверждать, что оба положительные решения уравнения (1) удовлетворяют задаче.

2) Если a Исследование уравнений

Исследовать уравнение — значит определить, имеет ли данное уравнение решения и, если имеет, то сколько.

Кроме этого основного вопроса, в исследование уравнения может входить необходимость выяснения и других частных вопросов. Например, вопроса о числе действительных, отрицательных, рациональных и целых корней.

Решение всех этих вопросов порой представляет большие трудности и не может быть достигнуто средствами только элементарной алгебры. Эти вопросы более подробно рассматриваются в курсах высшей алгебры. Элементарная же алгебра ими занимается частично.

Исследование уравнения первой степени с одним неизвестным

Общий вид уравнения 1-й степени с одним неизвестным таков:

1. Если то уравнение имеет одно и только одно решение

Если А и В — числа действительные, то и решение действительное.

Если А и В — мнимые, то решение может оказаться мнимым, но может оказаться и действительным.

Если А и В — действительные числа, одновременно положительные или одновременно отрицательные, то решение уравнения будет отрицательным.

Если А и В — действительные числа, из которых одно положительное, а другое отрицательное, то решение уравнения будет положительным.

Если В = 0, то единственным решением уравнения будет х = 0.

Если А=О и то уравнение Ах + В=О или Ах = — В не будет иметь ни одного решения, так как нет такого числа х, которое, будучи умножено на 0, дало бы число

Если А = 0 и В = 0, то решением уравнения будет являться любое число. Уравнение будет иметь бесконечное множество решений.

Пусть требуется исследовать уравнение

После преобразований данное уравнение примет вид:

1. Если , то уравнение будет иметь одно и только одно решение:

Это единственное решение окажется равным нулю лишь тогда, когда а = 5.

Если а — 3 = 0, т. е. а = 3, то уравнение примет вид:

Следовательно, при а = 3 данное уравнение не будет иметь ни одного решения.

Данное уравнение никогда не может иметь более одного решения, так как выражения (а — 3) (а — 5) не могут одновременно обратиться в нуль.

В исследование данного уравнения могут войти и другие вопросы. Например, поставим такой вопрос. «При каких значениях буквы а решение данного уравнения будет числом положительным?»

Для ответа на этот вопрос надо решить неравенство

Решив это неравенство, найдем, что корень данного уравнения будет положительным только тогда, когда

3

Исследование этого уравнения предлагается учащемуся сделать самостоятельно. Ниже приводится результат этого исследования.

  1. При а, равном 2, уравнение не имеет ни одного корня.
  2. При а, равном 3, любое число будет корнем данного уравнения.
  3. При всех прочих значениях а данное уравнение имеет только одни корень.

Исследование системы двух уравнений 1-й степени с двумя неизвестными

Общий вид системы двух уравнений 1-й степени о двумя неизвестными таков:

Умножим сначала обе части первого уравнения на , а второго на — В. Сложим почленно обе части уравнений. В результате получим уравнение:

Теперь умножим обе части первого уравнения на а второго на А и произведем сложение. В результате получим уравнение:

1. Если то данная система будет иметь одно и только одно решение:

2. Если то данная система не будет иметь ни одного решения.

Также система не будет иметь ни одного решения, если окажется, что

3. Если то уравнение

будет иметь своим решением любое число. Чтобы в этом случае находить решения системы, достаточно в одно из данных уравнений, например в уравнение

подставлять вместо буквы х любое число и после этого находить значение неизвестного у, соответствующее выбранному значению х. В этом случае данная система будет иметь бесконечное множество решений. Однако решением системы не может быть, вообще говоря, любая пара чисел, а лишь пара чисел, надлежащим образом найденная.

Если окажется то данная система будет удовлетворяться любой парой чисел.

Результаты произведенного исследования системы (I) можно оформить еще и так:

1) Если и если то система (I) имеет единственное решение.

2) Если и если то система (I) имеет бесконечное множество решений.

3) Если и если то система (I) не имеет ни одного решения.

называется, как нам уже известно (см. стр. 217), определителем системы (I).

Примеры:

Следовательно, эта система имеет одно и только одно решение.

2. Определитель системы:

Следовательно, эта система не имеет ни одного решения.

3. Определитель системы:

Следовательно, эта система имеет бесконечное множество решений.

Для получения решений этой системы достаточно одной из неизвестных, например х, давать любое значение и каждый раз находить из уравнения х + у = 10 соответствующее значение неизвестного у.

Таким образом, можем получить сколько угодно решений этой системы:

Исследование квадратного уравнения

Общий вид квадратного уравнения таков:

  1. Если то уравнение имеет два действительных различных корня.
  2. Если то уравнение имеет два действительных одинаковых корня.
  3. Если то уравнение имеет два мнимых сопряженных корня.

называется дискриминантом квадратного уравнения.

В исследование квадратного уравнения могут входить и другие вопросы. Например, исследуем характер корней уравнения

при условии, что

При

При

Таким образом, получилось следующее:

Если , то один из корней стремится к величине а другой — к бесконечности.

Можно убедиться, что получится такой же результат при , и тогда, когда В

убедитесь в том, что один из корней будет близок к числу другой будет числом очень большим.

В заключение рассмотрим еще следующий пример. Может ли уравнение

иметь мнимые корни, если все числа р, q и а действительные? Преобразовав данное уравнение, получим:

Дискриминант этого уравнения

ни при каких действительных значениях р, q и а не может быть числом отрицательным. Следовательно, данное уравнение не может иметь мнимых корней.

Примеры решения уравнений

1. Найти условия, при которых система

имеет два действительных решения, два мнимых сопряженных решения и, наконец, одно решение (двукратное).

Определив у в зависимости от х из первого уравнения и подставив во второе, получим после преобразований:

Дискриминант этого квадратного уравнения

после преобразований принимает вид:

Следовательно, данная система имеет два различных действительных решения, если два мнимых сопряженных решения, если и, наконец, одно решение (двукратное), если

2. Вывести условие, при котором у выражается из уравнения

рационально в зависимости от х.

Преобразуем данное уравнение к форме квадратного уравнения относительно неизвестного у:

Дискриминант этого уравнения

после преобразований примет вид:

Для того чтобы у выразился в зависимости от х, рационально, необходимо и достаточно, чтобы последний трехчлен 2-й степени относительно х оказался полным квадратом, т. е. чтобы его дискриминант равнялся нулю (см. стр. 300).

является необходимым и достаточным условием того, чтобы из уравнения (1) у выражался в зависимости от х рационально.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij

http://lfirmal.com/issledovanie-uravnenij/