Уравнение нернста для электродных потенциалов металлов

Применение уравнения Нернста в решении задач.

При рассмотрении вопроса об окислительно-восстановительных реакциях часто возникает необходимость расчета электродвижущей силы (ЭДС) и потенциалов отдельных полуреакций. В справочниках обычно приведены таблицы т.н. стандартных потенциалов тех или иных процессов, рассчитанных при р=1 атм, Т=298К и активностях участников равных 1. Однако в реальных задачах условия могут значительно отличаться от указанных выше. Как быть в таком случае? Ответ дает уравнение Нернста. В оригинальном виде оно выглядит так:









Как можно заметить, в уравнении фигурируют несколько постоянных величин. Также температура в подавляющем большинстве случаев равна 298К. Кроме того, можно заменить натуральный логарифм на десятичный. Это можно сделать путем умножения на коэффициент перевода. Если собрать все постоянные в единый множитель, то приходим к несколько иному, но более знакомому по учебным пособиям виду уравнения Нернста:

Такой вариант уравнения сильно облегчает жизнь в ряде случаев, например рассмотрении рН-зависимых процессов. Используя данное уравнение можно провести вычисления в любых условиях, приведенных в задаче. Рассмотрим характерные примеры задания по данной теме.

Пример 1:

Рассчитать ЭДС гальванического элемента, составленного из медной и цинковой пластин, погруженных в растворы 0.1М CuSO4 и 0.01М ZnSO4 соответственно. Коэффициенты активности ионов Cu 2+ и Zn 2+ принять равными единице.

Решение:

Для начала запишем уравнения протекающих процессов:


Далее находим по таблице стандартные потенциалы процессов:

Если в условиях задачи ничего не сказано про коэффициенты активности ионов, то можно считать их равными единице, как и в нашем случае. Тогда активности участников процессов можно принять равными их аналитическим концентрациям.

Найдем реальные потенциалы с учетом нестандартных активностей ионов:

Далее необходимо сравнить полученные величины между собой, чтобы определить, кто из участников процесса – окислитель. Потенциал меди больше, чем у цинка, поэтому она будет окислителем. Тогда найдем ЭДС системы:

Ответ: 1.13 В

Пример 2:

Одним из лабораторных способов получения хлора является действие KMnO4 на концентрированную соляную кислоту. Можно ли провести процесс при рН=4?

Решение:

Для начала запишем уравнения протекающих процессов.

Далее находим по таблице стандартные потенциалы процессов:

Несложно заметить, что от рН в данном случае зависит только потенциал перманганата. Тогда воспользуемся уравнением Нернста и рассчитаем его реальный потенциал в условиях задачи:

Получается, что потенциал KMnO4 стал меньше, чем у хлора, а значит, реакция не пойдет.

Уравнение Нернста. Потенциометрические методы анализа

Потенциометрические методы основаны на измерении электродвижущих сил (ЭДС):

где E — электродвижущая сила (ЭДС);
E1 и E2 — потенциалы электродов исследуемой цепи.

Потенциал электрода E связан с активностью и концентрацией веществ, участвующих в электродном процессе, уравнением Нернста:

где E0 — стандартный потенциал редокс-системы;
R — универсальная газовая постоянная, равная 8,312 Дж/(моль К);
T — абсолютная температура, К;
F — постоянная Фарадея, равная 96485 Кл/моль;
n — число электронов, принимающих участие в электродной реакции;
aox, ared — активности соответственно окисленной и восстановленной форм редокс-системы;
[ox], [red] — их молярные концентрации;
Гox, Гred — коэффициенты активности.

E=E0 при aox = ared = 1, причем имеется в виду гипотетический стандартный 1 М раствор, в котором коэффициент активности каждого растворенного вещества равен 1, а чистые вещества находятся в наиболее устойчивом физическом состоянии при данной температуре и нормальном атмосферном давлении.

Подставляя T=298,15 и числовые значения констант в уравнение, получаем для 25 °C

Однако потенциал отдельного электрода экспериментально определить невозможно. Относительные значения электродного потенциала находят, комбинируя данный электрод со стандартным водородным электродом, который является общепринятым международным стандартом. Потенциал водородного электрода принят равным нулю при всех температурах, поэтому потенциал данного электрода — это, в сущности, ЭДС элемента, состоящего из данного и стандартного водородного электрода.

Конструктивно стандартный водородный электрод представляет собой платинированную платиновую пластинку, омываемую газообразным водородом при давлении 1,013 . 10 5 Па (1 атм) и погруженную в раствор кислоты с активностью ионов H + , равной единице. При работе водородного электрода протекает реакция

В практической работе вместо хрупкого и нередко капризного водородного электрода применяют специальные, более удобные в работе стабильные электроды сравнения, потенциал которых по отношению к стандартному водородному электроду точно известен.

Уравнение (2) можно переписать

Величину E0‘ называют формальным потенциалом. Как видно, формальный потенциал характеризует систему, в которой концентрации (а не активности) всех участников равны 1,0 моль/л. Формальный потенциал включает в себя коэффициенты активности, т.е. зависит от ионной силы раствора. Если коэффициент активности равен 1, то E0‘=E0, т.е. формальный потенциал совпадает со стандартным. Точность такого приближения для многих расчетов оказывается достаточной.

Природа возникновения потенциала различна. Можно выделить следующие три основные классы потенциалов, которые не исчерпывают, конечно, всего многообразия. Это:

  1. Электродные потенциалы.
  2. Редокс-потенциалы.
  3. Мембранные потенциалы.

Хотя по термином «электродный потенциал» нередко имеют в виду любой потенциал, независимо от механизма его возникновения, в более узком понимании — это потенциал непосредственно связанный с материалом электрода. Например, цинковый электрод:

Активность свободного металла принимается равной единице. Электродные потенциалы отличаются от редокс-потенциалов, для которых материал электрода не имеет значения, так как они химически инертны по отношению ко всем веществам в растворе, и от мембранных, для которых разность потенциалов на мембране измеряется с помощью пары других (в принципе, возможно, одинаковых) электродов.

Потенциометрические методы анализа известны с конца прошлого века, когда Нернст вывел (1889) известное уравнение (1), а Беренд сообщил (1883) о первом потенциометрическом титровании. Интенсивное развитие потенциометрии в последние годы связано, главным образом, с появлением разнообразных типов ионоселективных электродов, позволяющих проводить прямые определения концентрации многих ионов в растворе, и успехами в конструировании и массовом выпуске приборов для потенциометрических измерений.

Потенциометрические методы анализа подразделяют на прямую потенциометрию (ионометрию) и потенциометрическое титрование. Методы прямой потенциометрии основаны на прямом применении уравнения Нернста (1) для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу соответствующего электрода. При потенциометрическом титровании точку эквивалентности определяют по резкому изменению (скачку) потенциала вблизи точки эквивалентности.

Васильев В. П. Аналитическая химия. В 2 кн. Кн. 2. Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. — 2-е изд., перераб. и доп. — М.:Дрофа, 2002. — 384 с., ил. — С. 179-181.

Окислительно — восстановительный потенциал

Электродные потенциалы. ЭДС реакции

Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.

В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.

Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.

Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.

Элемент Даниэля-Якоби

Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.

Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.

Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.

При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.

Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.

При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn 2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).

Zn — 2e — = Zn 2+

В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):

Cu 2+ + 2e — = Cu

Таким образом, в элементе Даниэля-Якоби происходит такая реакция:

Zn + Cu 2+ = Zn 2+ + Cu

Zn + CuSO4 = ZnSO4 + Cu

Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).

Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.

Окислительно-восстановительный потенциал

Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.

2Fe 3+ + 2I — = 2Fe 2+ + I2

таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.

В сосуды, содержащие растворы Fe 3+ и I — , поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.

Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe 3+ :

2I — — 2e — = I2

2Fe 3+ + 2e — = 2Fe 2+

Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.

Факторы, влияющие на значение окислительно-восстановительного потенциала

Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:

1) Природа вещества (окислителя и восстановителя)

2) Концентрация окисленной и восстановленной форм.

При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:

E – окислительно-восстановительный потенциал данной пары;

E°- стандартный потенциал (измеренный при Cок = Cвос);

R – газовая постоянная (R = 8,314 Дж);

T – абсолютная температура, К

n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;

F – постоянная Фарадея (F = 96484,56 Кл/моль);

Cок – концентрация (активность) окисленной формы;

Cвос– концентрация (активность) восстановленной формы.

Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:

При Cок > Cвос, E > и наоборот, если Cок 2- , CrO4 2- , MnO4 — ) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H + . И наоборот, окислительно-восстановительный потенциал падает с уменьшением H + .

4) Температура

При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.

Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.

Такие таблицы дают возможность сделать некоторые выводы:

Что можно определить по значению окислительно-восстановительного потенциала

  • Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например

(F2/2F — ) = +2,87 В – сильнейший окислитель

(K + /K) = — 2,924 В – сильнейший восстановитель

Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.

  • Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
  • Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция

Sn 2+ + 2Fe 3+ = Sn 4+ + 2Fe 2+

практически протекает в прямом направлении, т.к.

(Sn 4+ /Sn 2+ ) = +0,15 В,

(Fe 3+ /Fe 2+ ) = +0,77 В,

т.е. (Sn 4+ /Sn 2+ ) 3+ /Fe 2+ ).

Cu + Fe 2+ = Cu 2+ + Fe

невозможна в прямом направлении и протекает только справа налево, т.к.

В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.

  • Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
  • Пользуясь справочными данными, можно определить ЭДС реакции.

Как определить электродвижущую силу (ЭДС) реакции?

Рассмотрим несколько примеров реакций и определим их ЭДС:

  1. Mg + Fe 2+ = Mg 2+ + Fe
  2. Mg + 2H + = Mg 2+ + H2
  3. Mg + Cu 2+ = Mg 2+ + Cu

(Mg 2+ /Mg) = — 2,36 В

(Fe 2+ /Fe) = — 0,44 В

Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя

ЭДС = Е 0 ок — Е 0 восст

  1. ЭДС = — 0,44 — (- 2,36) = 1,92 В
  2. ЭДС = 0,00 — (- 2,36) = 2,36 В
  3. ЭДС = + 0,34 — (- 2,36) = 2,70 В

Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.

Связь константы равновесия и окислительно — восстановительного потенциала

Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.

Например, для реакции

Zn + Cu 2+ = Zn 2+ + Cu

Применяя закон действующих масс, можно записать

Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.

Значение константы равновесия можно вычислить, применив уравнение Нернста

Подставим в уравнение значения стандартных потенциалов пар Zn/Zn 2+ и Cu/Cu 2+ , находим

В состоянии равновесия E 0 Zn/Zn2+ = E 0 Cu/Cu2+, т.е.

-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем

Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 10 37,7 раз меньше, чем концентрация ионов цинка.

Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:

lgK = (E1 0 -E2 0 )n/0,059, где

K — константа равновесия

E1 0 и E2 0 – стандартные потенциалы окислителя и восстановителя соответственно

n – число электронов, отдаваемых восстановителем или принимаемых окислителем.

Если E1 0 > E2 0 , то lgK > 0 и K > 1.

Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E1 0 — E2 0 ) достаточно велика, то она идет практически до конца.

Напротив, если E1 0 0 , то K будет очень мала.

Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E1 0 — E2 0 ) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.

Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.

По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.

Как составить схему гальванического элемента?

Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:

  1. ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
  2. Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.

Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).

  1. Граница раздела фаз обозначается одной чертой — |
  2. Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
  3. Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.

Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:

Fe 0 + Cd 2+ = Fe 2+ + Cd 0

В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.

Анод Fe 0 |Fe 2+ || Cd 2+ |Cd 0 Катод

Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.


источники:

http://multitest.semico.ru/nernst.htm

http://zadachi-po-khimii.ru/obshaya-himiya/okislitelno-vosstanovitelnyj-potencial.html