Уравнение нернста для гальванических элементов

Определение термодинамических характеристик электрохимических цепей

Лабораторная работа № 1

Определение термодинамических характеристик электрохимических цепей.

Система, состоящая из двух электродов, помещенных в раствор электролита, которая при соединении электродов вне электролита каким-либо металлическим проводником создает во внешней цепи электрический ток, называется гальваническим (или электрохимическим) элементом.

Условная запись (схема) гальванического элемента

Для описания гальванических элементов применяется условная запись, в соответствии с которой сначала указывается материал одного из электродов, далее – раствор, в который помещен этот электрод, затем раствор, в который погружен второй электрод, и, наконец, материал другого электрода. Электроды отделяются от раствора сплошной вертикальной линией, а растворы разделяются либо двумя вертикальными линиями, когда считают, что на границе растворов нет скачка потенциала, либо пунктирной линией, когда таким скачком пренебречь нельзя. Так, медно-цинковый элемент может быть записан следующим образом:

где знаки + и – указывают полярность электродов; c1 и c2 – концентрации растворов.

При большой разнице между c1 и c2, когда нельзя пренебречь скачком потенциала на границе двух растворов, этот элемент записывают в другом виде:

(-)Zn½ZnSO4CuSO4½Cu(+)

В тех же случаях, когда хотят указать только участвующие в электродных реакциях ионы, запись упрощают:

Для обратимо работающего гальванического элемента ток всегда должен идти слева направо, а на концах быть один и тот же металл.

Устройство медно-цинкового гальванического элемента (элемента Даниэля-Якоби) показано на рисунке.

Рисунок — Медно-цинковый элемент (элемент Даниэля-Якоби):

1 – пористая диафрагма; 2 – цилиндрический электрод из листового цинка; 3 – медный электрод.

При замыкании электродов через внешнюю цепь на медном электроде пойдет процесс восстановления меди:

а на цинковом электроде – процесс окисления цинка:

Электроны, остающиеся на электроде при реакции окисления, будут перетекать во внешней цепи от цинка к меди, где будут участвовать в процессе восстановления меди. В растворе при работе гальванического элемента ток будет переноситься ионами меди и цинка, движущимися к цинковому электроду, и сульфат-ионами, движущимися к медному электроду.

Равновесные потенциалы медного и цинкового электродов связаны с активностями ионов меди и цинка в растворе уравнением Нернста:

Электродвижущая сила (ЭДС) гальванического элемента. Стандартная ЭДС

Разность равновесных потенциалов электродов гальванического элемента называется электродвижущей силой этого элемента. Для элемента Даниэля-Якоби это можно выразить:

,

где является стандартной ЭДС гальванического элемента, т. е. такого гальванического элемента, в котором активности потенциалопределяющих ионов равны единице.

Стандартная ЭДС обратимо работающего гальванического элемента равна разности стандартных потенциалов отдельных электродов гальванического элемента, причем, так как ЭДС всегда положительная величина, от положительного потенциала отнимается отрицательный потенциал.

Вывод уравнения Нернста для гальванического элемента

Если в электрохимической системе обратимо и изотермически протекает следующая реакция:

,

при , изменение энергии Гиббса DG этой реакции соответствует электрической энергии системы:

и обратимая ЭДС ( ЕP, T) системы определяется как:

В то же время изменение энергия Гиббса реакции определяется формулой:

и так как , получается следующее:

где ; n — стехиометрические коэффициенты, взятые со знаком минус у исходных веществ и плюс у продуктов реакции. Тогда можно записать:

В состоянии равновесия при данных давлении и температуре и соответственно:

Если активности всех компонентов равны единице (аi=1), то , где — стандартное значение энергии Гиббса для реакции при выбранных Р и Т.

,

где Ка — константа равновесия реакции. Из этого следует, что:, или:

Если аi = 1, то ,

где Е0 — стандартная ЭДС. Полученное после подстановки уравнение называется уравнением Нернста:

или

Обратимые и необратимые гальванические элементы

Гальванические элементы могут быть обратимыми и необратимыми. Гальванический элемент является обратимым, если токообразующая реакция в элементе может быть обращена в противоположном направлении при приложении к нему извне ЭДС, превышающей собственную ЭДС элемента на бесконечно малую величину. Примером обратимых гальванических элементов может служить элемент Даниэля-Якоби (если пренебречь переходом ионов через границу растворов):

В этом элементе при его работе будет иметь место реакция:

Zn + CuSO4 ® Cu + ZnSO4

Если к элементу приложить внешнюю ЭДС, противоположно направленную относительно ЭДС элемента, то в нем будет идти реакция:

Cu + ZnSO4 ® CuSO4+ Zn,

т. е. в отличие от токообразующей реакции в элементе медь начнет растворяться, а цинк – выделяться из раствора.

Примером необратимого элемента может служить цепь:

В этом элементе при его работе будет идти процесс:

Zn + CuSO4 ® ZnSO4+Cu

Если приложить к нему внешнюю противоположно направленную ЭДС, то будет происходить процесс растворения меди на медном электроде и ее выделение на цинковом, т. е. этот процесс не будет обратным процессу при работе такого гальванического элемента.

Термодинамические характеристики гальванического элемента

Работа какого-либо обратимого процесса при определенных ограничениях, налагаемых на условия осуществления процесса, например при постоянстве температуры и давления, будет максимальной полезной работой, поэтому термодинамический расчет ЭДС возможен только в случае обратимых гальванических элементов. Зависимость максимальной полезной работы химической реакции в гальваническом элементе от температуры можно связать с уравнениями Гиббса-Гельмгольца:

Максимальная полезная работа электрохимической реакции равна

Подставляя в уравнения Гиббса-Гельмгольца вместо DG и DF их значения, выраженные через ЭДС, можно получить эти уравнения в форме, связывающей ЭДС с тепловым эффектом реакции и температурой:

где ¶Е/T – температурный коэффициент, который показывает во сколько раз изменяется ЭДС при увеличении температуры на 1 К.

Или, учитывая, что — DН=Qp – тепловой эффект реакции при постоянном давлении, а — DU=Qv — тепловой эффект реакции при постоянном объеме, можно получить уравнения Томсона, являющиеся частным случаем уравнений Гиббса-Гельмгольца:

В том случае, когда ЭДС гальванического элемента не зависит от температуры, т. е. (¶Е/¶T)р=0 или (¶Е/¶T)v=0, эти уравнения переходят в:

Если ¶Е/¶T > 0, то и гальванический элемент работает с поглощением тепла, т. е. элемент охлаждается.

Применение уравнения Нернста в решении задач.

При рассмотрении вопроса об окислительно-восстановительных реакциях часто возникает необходимость расчета электродвижущей силы (ЭДС) и потенциалов отдельных полуреакций. В справочниках обычно приведены таблицы т.н. стандартных потенциалов тех или иных процессов, рассчитанных при р=1 атм, Т=298К и активностях участников равных 1. Однако в реальных задачах условия могут значительно отличаться от указанных выше. Как быть в таком случае? Ответ дает уравнение Нернста. В оригинальном виде оно выглядит так:









Как можно заметить, в уравнении фигурируют несколько постоянных величин. Также температура в подавляющем большинстве случаев равна 298К. Кроме того, можно заменить натуральный логарифм на десятичный. Это можно сделать путем умножения на коэффициент перевода. Если собрать все постоянные в единый множитель, то приходим к несколько иному, но более знакомому по учебным пособиям виду уравнения Нернста:

Такой вариант уравнения сильно облегчает жизнь в ряде случаев, например рассмотрении рН-зависимых процессов. Используя данное уравнение можно провести вычисления в любых условиях, приведенных в задаче. Рассмотрим характерные примеры задания по данной теме.

Пример 1:

Рассчитать ЭДС гальванического элемента, составленного из медной и цинковой пластин, погруженных в растворы 0.1М CuSO4 и 0.01М ZnSO4 соответственно. Коэффициенты активности ионов Cu 2+ и Zn 2+ принять равными единице.

Решение:

Для начала запишем уравнения протекающих процессов:


Далее находим по таблице стандартные потенциалы процессов:

Если в условиях задачи ничего не сказано про коэффициенты активности ионов, то можно считать их равными единице, как и в нашем случае. Тогда активности участников процессов можно принять равными их аналитическим концентрациям.

Найдем реальные потенциалы с учетом нестандартных активностей ионов:

Далее необходимо сравнить полученные величины между собой, чтобы определить, кто из участников процесса – окислитель. Потенциал меди больше, чем у цинка, поэтому она будет окислителем. Тогда найдем ЭДС системы:

Ответ: 1.13 В

Пример 2:

Одним из лабораторных способов получения хлора является действие KMnO4 на концентрированную соляную кислоту. Можно ли провести процесс при рН=4?

Решение:

Для начала запишем уравнения протекающих процессов.

Далее находим по таблице стандартные потенциалы процессов:

Несложно заметить, что от рН в данном случае зависит только потенциал перманганата. Тогда воспользуемся уравнением Нернста и рассчитаем его реальный потенциал в условиях задачи:

Получается, что потенциал KMnO4 стал меньше, чем у хлора, а значит, реакция не пойдет.

Уравнение нернста для гальванических элементов

7 ОСНОВЫ ЭЛЕКТРОХИМИИ

7.1 ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ. НАПРАВЛЕНИЕ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

Сущность этой реакции вытеснения сводится к восстановлению одним металлом иона второго. Например, в ряду металлов Zn , Fe , Cu , Ag каждый предыдущий вытесняет последующий из его солей, тогда как обратное вытеснение не наблюдается.

Процесс взаимодействия цинка с ионом меди по приведенной выше схеме можно разбить на две полуреакции :

Очевидно, что если бы удалось осуществить передачу электронов не непосредственно, а через металлический проводник, то по нему потек бы от цинка к меди поток электронов, т.е. электрический ток. На рисунке 6.1 показана схема гальванического элемента, т.е. установки, делающей возможной такую передачу электронов по проводу. В гальваническом элементе происходит непосредственное преобразование энергии химической реакции в электрическую энергию.

Рисунок 6.1 – Конструкция медно-цинкового гальванического элемента (элемент Даниэля-Якоби)

Сосуд А и соединяющая оба сосуда трубка В заполнены раствором ZnSO4, сосуд Б – раствором CuSO4. В первый из них опущена цинковая пластинка, во второй – медная. Если соединить обе пластинки проводом, то по нему в указанном стрелкой направлении начнут перемещаться электроны (потечет электрический ток). Трубка В обеспечивает замкнутость цепи, по ней перемещаются ионы SO4 2– . Электрод, на котором происходит процесс восстановления (на рисунке 6.1 – медный) называется катодом, а электрод, на котором осуществляется окисление (в рассмотренном примере – цинковый) – анодом В электротехнике принята противоположная система обозначений электродов: катодом называют отрицательный полюс источника тока, т.е. электрод, передающий электроны во внешнюю цепь (в данном случае цинковый). В учебном пособии электроды названы так, как это принято в электрохимии. .

В данном случае электродные процессы являются гетерогенными, т.к. окисленная и восстановленная формы находятся в разных фазах *. В более общем виде гетерогенный электродный процесс можно записать в виде:

Me (ВФ, тв . фаза) – ne – Me n + ( aq ) (ОФ, раствор)

На границе раздела фаз возникает двойной электрический слой, состоящий из катионов Me n + (в растворе) и электронов (в металле), что приводит к появлению потенциала E( Me n + / Me ). Его абсолютная величина определению не поддается, однако легко измеряется разность потенциалов катода и анода, которая называется электродвижущей силой (ЭДС) гальванического элемента Δ E = E к – Eа . Если в таких устройствах условно считать потенциал какого-то электрода равным нулю, то измерением ЭДС можно получить относительные значения других электродных потенциалов, что важно для сравнительной количественной характеристики электродов.

Условно за нуль принят потенциал стандартного водородного электрода, который состоит из платиновой пластинки, покрытой платиновой чернью и частично погруженной в раствор кислоты с активной концентрацией ионов водорода, равной 1 моль/л. Электрод омывается газообразным водородом под давлением 1,013 · 10 5 Па (1 атмосфера), что приводит к образованию системы:

2 H + + 2eH2

Для измерения электродных потенциалов металлов, например меди, составляют гальванический элемент, в котором вторым электродом служит стандартный водородный электрод. В основе работы составленного гальванического элемента лежит реакция

Cu 2+ + H2 → 2H + + Cu

На схеме гальванического элемента границы раздела фаз показывают одной вертикальной чертой, а электроды отделяют друг от друга двумя вертикальными чертами. Анод на схеме указывают слева, а катод – справа:

А (–) Pt (H2) | 2H + | | Cu 2+ | Cu (+) К

Катодом в этом случае является медный электрод. ЭДС гальванического элемента, измеренная при концентрации (активности) ионов меди 1 моль/л, равна 0,34 В и может быть выражена как Δ E = E(Cu 2+ / Cu )– E(2H + /H2). Так как E(2H + /H2) принят за нуль, то E(Cu 2+ / Cu )= Δ E =0,34 В при стандартных условиях. Если медь заменить цинком, то катодом будет водородный электрод. Тогда E(Zn 2+ / Zn )= – Δ E = –0,76В.

Электродные потенциалы металлов, измеренные по отношению к водородному электроду при стандартных условиях, т.е. активной концентрации ионов металла в растворе, равной 1 моль/л, и температуре 25 ° С (298 К), называют стандартными и обозначают Е ° . Так, Е ° (Cu 2+ / Cu )=0,34В, Е ° (Zn 2+ / Zn )= –0,76В. Ряд металлов, расположенных в порядке возрастания их стандартных электродных потенциалов, называется рядом напряжений. В основных чертах он имеет следующий вид:

K, Ca , Na , Mg , Al , Zn , Fe , Ni , Sn , Pb , H, Cu , Hg , Ag , Pt , Au

Ниже приведены основные следствия из ряда напряжений:

а) Каждый металл вытесняет из солей все другие, расположенные в ряду напряжений правее него.

б) Все металлы, расположенные левее водорода, вытесняют его из кислот, расположенные правее – не вытесняют.

в) Чем дальше друг от друга стоят два металла, тем большую ЭДС имеет построенный из них гальванический элемент.

Величина электродного потенциала зависит от концентрации В данном случае имеется в виду молярная концентрация (моль/л). ионов металла в растворе его соли [ Me n + ], их заряда ( n ) и температуры ( Т), что выражается уравнением Нернста:

;

здесь F – число Фарадея ( F=96485 96500 Кл/моль).

При Т=298 К можно применять упрощенную форму уравнения Нернста:

Величина ЭДС и изменение энергии Гиббса * для химического процесса, лежащего в основе работы гальванического элемента, связаны соотношением Δ G = – nF Δ E , где n – количество электронов, передаваемых от восстановителя к окислителю. Необходимо иметь в виду, что реакцию необязательно проводить в гальваническом элементе. Она может быть проведена, например, в пробирке. Единственным отличием будет то, что полуреакции окисления и восстановления не разделены по электродам, а происходят в одной области пространства. Следовательно, Δ G может вычисляться точно так же, т.е. через ЭДС гипотетического гальванического элемента, найденную из электродных потенциалов полуреакций. В качестве примера рассмотрим реакцию:

2 Fe 2+ + Cl2 → 2 Fe 3+ + 2 Cl –

Здесь n=2, т.к. молекула хлора принимает два электрона (по одному от каждого иона Fe 2+ ). Соотношение Δ G = – nF Δ E находит применение для определения Δ G окислительно-восстановительных реакций * в растворах по измеренной величине ЭДС гальванических элементов, в которых они могут протекать, а также для выяснения возможности работы гальванического элемента на той или иной химической реакции, если для нее изменение энергии Гиббса Δ G известно.


источники:

http://scienceforyou.ru/jelektrohimija/uravnenie-nernsta

http://www.chem-astu.ru/chair/study/genchem/r7_1.htm