Уравнение никольского для стеклянного электрода

Уравнение никольского для стеклянного электрода

СТЕКЛЯННЫЙ ЭЛЕКТРОД. ТЕОРИЯ И ПРИМЕНЕНИЯ (ШУЛЬЦ М.М. , 1998), ХИМИЯ

Приводится краткий исторический очерк становления теории стеклянного электрода. В рамках ионообменной теории проведены систематизация и обобщение электродных свойств широкого круга щелочно-силикатных стекол с учетом их строения. Рассмотрены области применения стеклянного электрода для решения фундаментальных научных и практических задач.

СТЕКЛЯННЫЙ ЭЛЕКТРОД. ТЕОРИЯ И ПРИМЕНЕНИЯ

Санкт-Петербургский государственный университет

В современной практике химического анализа и физико-химических исследований широко применяются мембранные ионоселективные электроды (ИСЭ). Статья посвящена гальваническим элементам, частью которых являются ИСЭ. Их электрический потенциал чувствителен к изменению содержания определенного вида ионов в растворе, что выражается и в зависимости электродвижущей силы (ЭДС) гальванического элемента от концентрации этих ионов. Стеклянный электрод — один из наиболее распространенных и хорошо изученных электродов такого рода. Уже в первых работах по изучению стеклянных электродов была обнаружена различная чувствительность разных по составу стекол к изменению кислотности среды (pH), появились сведения о влиянии ионов щелочных металлов на величину потенциала стеклянных электродов, что явилось основанием разработки различных теорий действия стеклянных электродов и изучения электродных свойств стекла.

Б.П. Никольским была развита ионообменная теория, получившая широкое признание. В предвоенные годы началось производство рН-метров (приборов, измеряющих pH) со стеклянными электродами, а после войны было убедительно доказано, что стеклянные электроды можно применять не только для определения кислотности (pH-метрия), но и для изучения содержания в растворах других видов ионов (ионометрия). Кроме того, исследование электродных свойств разнообразных по составу стекол позволило получать интересную информацию об их строении (электродный метод), о взаимодействии стекол с растворами электролитов, а также о физико-химических свойствах самих электролитов.

РАЗВИТИЕ ТЕОРИИ СТЕКЛЯННОГО ЭЛЕКТРОДА

Еще в работе немецких ученых Габера и Клеменсевича (1909 год), как и во всех последующих работах вплоть до настоящего времени, использовали гальванический элемент, который можно представить следующей схемой:

ЭДС (E) этого элемента является алгебраической суммой постоянных межфазных скачков потенциалов j1 , j2 , j3 и переменного j, зависящего от составов внешнего исследуемого раствора и стекла. Таким образом, величина E однозначно свидетельствует об изменении потенциала j между данным стеклом и исследуемым раствором. На рис. 1 представлена конструкция стеклянного электрода (СЭ).

В 1922 году американский ученый Юз доказал, что щелочно-силикатные СЭ действуют аналогично водородному электроду, обратимому по отношению к H+. Под обратимостью понимается, что зависимость возникающего между стеклом и исследуемым раствором электрического потенциала от активности H+ (aH) в растворе описывается уравнением Нернста в частном виде:

где — стандартное значение потенциала электрода, зависящее лишь от природы электрода и температуры, R — газовая постоянная, F — число Фарадея, T — температура.

Активность связывается с концентрацией ионов Ci соотношением ai = giCi . Это соотношение справедливо для ионов любого сорта, что отражается индексом i. Коэффициент активности gi может быть равен 1, тогда ai = Ci , может быть больше или меньше единицы. Если поведение СЭ следует соотношению (2), то принято говорить, что он обладает водородной функцией.

Дальнейшие исследования показали, что область водородной функции стекла ограничена как в щелочных, так и в кислых растворах. На пределы водородной функции одного и того же СЭ в щелочных растворах влияют природа и концентрация находящихся в них катионов, а на пределы в кислых растворах — природа и концентрация анионов. В связи с этим было высказано предположение о переходе функций СЭ от водородной к металлической в первом случае и к анионной во втором.

Во многих работах отмечалась зависимость электродных свойств стекол от их химического состава. Существенное принципиальное и практическое значение имело установление в 1932 году С.И. Соколовым и А.Г. Пасынским зависимости пределов водородной функции стекол в щелочных средах от соотношения размеров ионов щелочных металлов, входящих в состав стекла и раствора.

Для описания указанной совокупности экспериментальных фактов развивались различные теоретические представления, которые условно можно разделить на две основные группы. Для первой характерно рассмотрение стеклянной мембраны как пористой перегородки, в которую ионы из раствора проникают вместе с растворителем, например диффузионные теории. Однако неточность положений диффузионных теорий вызывала трудности при описании экспериментальных результатов.

Более перспективными и термодинамически обоснованными представляются ионообменные теории, в частности «простая», предложенная в 1934 году Б.П. Никольским [1]. Для построения теории СЭ особенно важными явились следующие положения: 1) электродные щелочно-силикатные стекла имеют ионную природу электропроводности за счет миграции только катионов щелочных металлов или других катионов, 2) потенциал СЭ в гальваническом элементе изменяется в зависимости от состава внешнего исследуемого раствора по соотношению (2).

Основой «простой» ионообменной теории служит допущение о равновесном распределении между стеклом и раствором подвижных в них ионов, которые эквивалентно замещают друг друга по реакции

В этом варианте теории предполагалось, что g катионов H+ и M+ в стекле равны единице. С учетом этих предположений на основе применения к системе стекло — раствор условий равновесия было получено следующее выражение зависимости потенциала СЭ от активностей ионов H+ и M+ в растворе:

где K = (aHCM)/(aMСH) — константа равновесия реакции обмена (3), которая зависит лишь от температуры и природы электродного стекла и непосредственно определяется из экспериментально полученных зависимостей j от aН и aM , aH , aM — активности ионов H+ и M+ во внешнем исследуемом растворе, CH , CM — концентрации ионов H+ и M+ в стекле.

Согласно теории, стекло может проявлять водородную функцию при aH @ KaM и тогда выражение (4) превращается в соотношение (2). При aH ! KaM уравнение (4) записывается как

что эквивалентно наличию у стекла металлической функции. В промежуточной области значений pH, как следует из теории, электрод обладает смешанной функцией: и водородной и металлической (переходная область). Важным следствием теории является величина отклонения от водородной функции СЭ при повышении pH исследуемого раствора, которое определяется отношением активностей H+ и M+ в растворе, а не их абсолютными значениями.

Как видно из соотношения (4), величина K является важнейшей характеристикой электродных свойств стекол и мерой специфичности их электродных функций. Она тем меньше, чем в стекле прочнее связаны H+ и слабее M+ (при заданной природе растворителя). Соответственно чем меньше K, тем в более широком интервале значений pH стекло обладает водородной функцией, тем позже наступает отклонение от этой функции и начинается переход к полной металлической функции. Для исследованных стекол значение K колеблется от 10-1 до 10-15.

Однако после создания «простой» ионообменной теории оставались еще окончательно невыясненными важные ее положения: 1) не было строгого термодинамического доказательства наличия металлической функции у стекол, 2) не было экспериментально установлена возможность перехода от полной водородной функции к полной металлической для одного и того же стекла, как следует из теории. Для решения этих вопросов Б.П. Никольским и автором был выполнен большой цикл исследований. Результатом работ явились количественное доказательство металлической функции СЭ в термодинамически строго обоснованных опытах, а также экспериментальное установление упомянутого выше факта, важного для теории СЭ: отклонение от водородной функции однозначно определяется отношением активностей H+ и M+ в растворе [2]. В практическом отношении это нашло отражение в разработке рецептур стекол для изготовления СЭ с натриевой и калиевой функциями. В теоретическом плане выявились конкретно и задачи дальнейшего развития теории СЭ.

Еще в 1934 году Б.П. Никольский предположил, что более растянутый переход СЭ от водородной к металлической функции, чем это следовало из «простой» теории, можно объяснить наличием в стекле мест с различной прочностью связей ионов H+. Это предположение было развито им в количественной форме в уравнениях обобщенной теории [3]. Позже в работах, выполненных совместно Б.П. Никольским и автором, были уточнены некоторые исходные положения зависимости потенциала СЭ от активности ионов в растворах на основе представлений о существовании в стекле ионогенных групп HRi и MRi и их диссоциации. В зависимости от природы ионогенных групп они диссоциируют по-разному, что отражается в величинах их констант диссоциации. Решение системы уравнений, включающих рассмотрение всех возможных процессов обмена и диссоциации ионогенных групп, условий материального баланса и электронейтральности (для n ионогенных групп таких уравнений будет 3n + 3), в конечном итоге дает возможность получить зависимость потенциала СЭ от активностей ионов в растворе. Для наглядности рассмотрим частный случай, имеющий вместе с тем наиболее существенное значение при обсуждении экспериментальных данных. Так, когда ионогенные группы в стекле диссоциируют лишь незначительно, что вполне вероятно, исходя из совокупности физико-химических свойств стекол, для n сортов ионогенных групп получается следующее выражение потенциала СЭ:

где — общая концентрация i-х ионогенных групп, — константы диссоциации ионогенных групп HRi и MRi соответственно, K — константа ионообменного равновесия.

Использование соотношения (5) в случае резкой дифференциации связей H+ и M+ и двух типов анионов Ri в структуре стекла (HR1 , HR2 — H-форма и MR1 , MR2) позволило количественно описать экспериментально полученные двухступенчатые зависимости E-pH. Анализ уравнения (5) для этого варианта показывает, что первая ступенька таких кривых выражает водородную и металлическую функции в основном сильнокислотных групп (слабые связи между H+ и Ri) стекла, вторая — соответствующие электродные функции слабокислотных групп (сильные связи между H+ и Ri).

Параллельно развивалось и другое направление ионообменной теории, в котором отсутствовали какие-либо представления о строении стекол, а при моделировании их электродных свойств для согласования с опытом вводили концентрационно зависимые коэффициенты активностей ионов в стекле. В общем оба направления не исключают, а скорее дополняют друг друга.

Основное значение полученных в обобщенной теории уравнений заключается в их предсказательной силе, возможности описать зависимости E-pH, установленные экспериментально, которые не только количественно, но и качественно не могут быть описаны уравнением «простой» теории. Вместе с тем на основе сопоставления теоретических и экспериментальных кривых представляется возможность расчета характерных постоянных стекол: констант диссоциации ионогенных групп и обмена ионов, а также переменных, определяющих распределение основных оксидов между оксидами-стеклообразователями. Иначе говоря, исследование различных СЭ является косвенным структурно чувствительным методом (электродный метод) изучения строения стекла.

ЭЛЕКТРОДНЫЕ СВОЙСТВА СТЕКОЛ

И ИХ ХИМИЧЕСКОЕ СТРОЕНИЕ

Ученые для некоторых щелочно-силикатных стекол получили данные, характеризующие зависимость электродных свойств этих стекол от их состава. Однако они нуждались в существенном дополнении систематически поставленными исследованиями с учетом представлений о структуре стекол. Это было учтено в какой-то мере в исследованиях, поставленных в Ленинградском государственном университете. Были изучены по единой методике электродные свойства ряда щелочно-силикатных стекол, содержавших кроме оксида щелочного металла и кремнезема один из оксидов элементов от первой до пятой группы Периодической системы (трехкомпонентные стекла). Изучали и более сложные по химическому составу стекла, в особенности при разработке практических рецептур. Всего исследовано более тысячи стекол различных составов. Получен богатейший экспериментальный материал, позволивший на базе ионообменной теории систематизировать и составить общее представление о зависимости электродных свойств стекол от их химической природы и строения. Прежде всего принимали во внимание: 1) структурную основу силикатных стекол образует кремниево-кислородная сетка, 2) атомы кремния могут частично замещаться атомами других элементов, 3) при введении в оксид стеклообразователь, например в SiO2 оксидов-модификаторов, происходит разрыв связей Si-O-Si, а подвижные катионы-модификаторы располагаются в межсеточном пространстве, причем их прочность связи с каркасом стекла определяется их собственной природой и природой катионов-сеткообразователей [4, 5]. Напомним, что типичными оксидами-стеклообразователями являются SiO2 , GeO2 , P2O5 , B2O3 , которые образуют стеклообразную сетку из элементкислородных полиэдров, соединенных через общий атом кислорода. К оксидам-модификаторам относятся в основном оксиды щелочных и щелочноземельных металлов. Введение этих оксидов в оксиды-стеклообразователи чаще всего приводит к разрыву сетки стекла, как в случае SiO2 .

В рамках ионообменной теории при взаимодействии стекла с раствором в его поверхностном слое образуются слабо- и сильнокислотные ионогенные группы в Н-форме. В этой связи методически исследования электродных свойств стекол проводили следующим образом. Сначала СЭ выдерживали в кислоте. При этом поверхностный слой электродного стекла насыщался ионогенными группами HRi . Затем проводили измерение ЭДС гальванического элемента (1), частью которого был обработанный в кислоте СЭ, в зависимости от pH исследуемого внешнего раствора. Изменение pH этого раствора проводили путем добавления к кислоте раствора щелочи с катионом, одноименным щелочному катиону стекла. Таким образом и получали упомянутые выше кривые E-pH.

Приведем несколько примеров исследования электродных свойств стекол, полученных на основе различных силикатных систем.

Системы M2O-SiO2 (M = Li, Na; в дальнейшем изложении под символом M будем понимать только эти металлы) явились базовыми для изготовления СЭ. Стекла, образующиеся в этих системах (© 20-30 мол. % M2O), обладают водородной функцией в сравнительно широком диапазоне значений рН (прямолинейный участок зависимости E-pH на рис. 2, кривая Li).

Экспериментальные кривые для этих стекол удовлетворительно описываются уравнением (5) в предположении существования слабокислотных [SiO3/2]OH и диссоциирующих полярных [SiO3/2]O-M+-групп. Этот результат полностью коррелирует с имеющимися сведениями о строении этих бинарных стекол [4, 5]. В соответствии с теорией константы обмена катионов между стеклом и раствором малы: KHLi > 10-12 ; KHNa > 10-11.

Системы М2О-RO(R2O)-SiO2 (R = Cs, Be, Mg, Ca, Ba, Zn, Pb). Замещение части SiO2 на оксиды R или несколько расширяет область водородной функции в щелочных средах и сокращает в кислых, или, наоборот, сокращает в щелочных и расширяет в кислых. Рис. 2 иллюстрирует сокращение водородной функции литиево-силикатного стекла, в котором SiO2 замещен на оксиды Be, Mg, Ca, Ba. Соответственно константа К увеличивается в ряду оксидов элементов: Cs, Ba, Ca, Mg, Zn, Be. Увеличение значений K связано с ослаблением связи H+ в стекле, что соответствует данным по электропроводности этих стекол. Такое поведение электродных свойств стекол можно объяснить предположив образование в стекле разнородных ассоциаций

Как правило, ионы Rn+ практически неподвижны в стекле. Поэтому в этих группах в результате ионообменного процесса замещаются только ионы M+ на H+ и образуются ассоциаты

В этих ассоциатах H+ связан тем прочнее, чем меньше плотность заряда Rn+. В случае больших катионов Cs1+ и Ba2 + ион водорода связан более прочно, чем в случае маленьких ионов, например Be2 +. Иначе говоря, замена SiO2 на оксиды Cs и Ba приводит к расширению пределов водородной функции электродных стекол в щелочную область (рис. 2). Этот факт был использован при изготовлении СЭ для определения pH в щелочных средах. При движении слева направо в указанном ряду, по-видимому, увеличивается тенденция к образованию сильнокислотных элементосиликатных групп, в которых маленькие ионы Mg2 + и Be2 + выступают в роли катионов-сеткообразователей (как Si4 +). Для оксидов же крупных катионов Cs1+, Ba2 + и Pb2 + можно отметить проявление эффекта оксида-модификатора (разрыв связей Si-O-Si). Кроме указанных ионогенных групп в стекле, вероятно, имеется широкий набор промежуточных состояний, что отличает эти системы от рассматриваемых далее.

Системы M2O-R2O3-SiO2 (R = B, Al, Ga, In, Sc, Y, La, Pr, Nd, Fe). Влияние на электродные свойства стекол оксидов элементов главной подгруппы (В, Аl, Ga, In), а также FeIII заметно отличается от влияния оксидов побочной подгруппы (Sc, Y) и редкоземельных элементов (La, Pr, Nd). Для оксидов элементов главной подгруппы и Fe2O3 характерно следующее: малые их добавки (0,5-2 мол. %) приводят к резкому смещению верхнего предела водородной функции в сторону меньших значений рН (от 10 — литиево-силикатное стекло, до 2-3 — литиево-силикатное стекло с добавками оксидов B, Al, Ga) и к увеличению усредненных значений константы К. Такие добавки оксидов приводят к сильному расширению переходной области от водородной к металлической функции и появлению на кривых Е-рН двух ступенек (рис. 3, 2 ). Ход этих кривых, напоминающих кривые титрования смеси сильной и слабой кислоты, может быть описан уравнением (5), если его применить к случаю распределения ионов по двум основным сортам ионогенных групп: силикатным [SiO3/2]OM(H) и элементосиликатным [RO4/2]-M+(H+), которые наряду с силикатными группами образуют сетку стекла (эффект иона-стеклообразователя). При снятии кривых E-pH в поверхностном слое стекла происходит процесс постепенного замещения H+ на M+. При этом сначала на M+ преимущественно замещаются менее прочно связанные ионы H+ в элементосиликатных группах. Этому процессу отвечает первая ступенька. Появление второй ступеньки связано с обменным вытеснением более прочно связанных ионов H+ в слабокислотных силикатных группах. Доля элементосиликатных [RO4/2]-M+ групп растет с увеличением отношения концентраций [R2O3 / M2O]. Увеличение количества этих групп ответственно за исчезновение второй ступеньки (рис. 3, 3 ).

Движению слева направо в ряду оксидов: Al2O3 , (B2O3), Ga2O3 , (Fe2O3), In2O3 отвечают ослабление электродного эффекта оксида стеклообразователя и усиление отмеченного эффекта оксида-модификатора. Указанный факт связан с уменьшением вероятности образования элементосиликатных групп в рассматриваемом ряду оксидов, что определяется отношением радиусов и силой поля ионов R3 +.

В отличие от рассмотренной выше группы оксидов добавки к бинарным стеклам М2О-SiO2 оксидов La2O3 , Nd2O3 , Y2O3 , Sc2O3 не приводят к очень резким изменениям их электродных свойств. Однако в этом ряду оксидов движению слева направо отвечает усиление эффектов, которые также можно связать с образованием групп элементосиликатного типа. Стекла, включающие Y2O3 , особенно Sc2O3 , обнаруживают отклонения от водородной функции и переход к металлической функции при сравнительно малых значениях рН. Для этих оксидов так же, как для оксидов RO, нельзя отметить резкой дифференциации связей ионов Н+ и М+ в структуре. Здесь также можно говорить о широком наборе различных энергетических состояний ионов, что проявляется в плавном переходе от водородной к металлической функции. Эти оксиды благоприятно сказываются на химической устойчивости стекол.

При исследовании электродных свойств стекол, включающих оксиды железа, было обнаружено, что некоторые стекла с большим их содержанием приобретают способность отвечать на окислительный потенциал растворов. Таким образом, появилась возможность применения новых материалов для изготовления электродов, которые могут найти применение в оксредметрии. Самостоятельный интерес представляет и дальнейшее исследование свойств таких стеклянных электродов.

Системы М2О-RO2-SiO2 (R = Ge, Sn, Ti, Zr). В противоположность ожидаемому оказалось, что введение оксидов RO2 приводит к резкому смещению начала отклонений от водородной функции в сторону меньших значений рН и к ступенчатому ходу кривых Е-рН. Последнее говорит о дифференциации связей ионов по двум сортам ионогенных групп: слабо- и сильнокислотных. С увеличением концентрации RO2 в стеклах увеличиваются значения постоянных К. Таким образом, была установлена полная аналогия в свойствах рассматриваемых стекол и стекол, включающих такие оксиды-стеклообразователи, как В2О3 , Al2O3 и др. Мы предполагаем, что и в данном случае в сетке стекла образуются узлы с избыточным отрицательным зарядом, которым, возможно, отвечают ионогенные группы [RO6/2]2 — 2M+(2H+). Образование групп такого рода (сильнокислотных в Н-форме) проявляется все более заметно в следующем ряду оксидов: GeO2

Стеклянные электроды

Стеклянные электроды — старейшие и наиболее распространенные ИСЭ. Эти электроды превосходят все другие по удобству и универсальности своих применений и в последнее время занял монопольное положение для измерения и регулирования рН в практике научных исследований и в промышленности.

Стеклянный электрод- это несколько условное название несложной системы, включающей небольшой сосуд из стекла с помещенным в него стандартным раствором и токоотводом. Сосуд имеет горловину из изолирующего стекла, на конце которой напаян шарик из специального электродного стекла; обладающего заметной электропроводностью. Стекло проводит электричество благодаря тому что в нем могут мигрировать ионы щелочных металлов ( натрия или лития ) , входящие в состав стекла при его синтезе.

Устройство гальванического элемента служащего для определения рН, иллюстрируется схемой (рис. 1) .

Здесь в качестве внутреннего стандартного раствора выбран раствор соляной кислоты( 0,1н) ; иногда туда добавляют хлористый натрий или хлористый калий ;часто берут какой-либо буферный раствор с добавкой хлоридов или бромидов. Токоотводом здесь служит хлорсеребряный электрод. Это серебряная проволочка, покрытая осадком хлористого серебра (то, что это осадок, символизируется подчеркиванием). К ней припаивается изолированный, экранированный и заземленный медный провод.

На границе хлорсеребряного электрода и раствора НСI возникает совершенно определенный скачок потенциала. Он возникает и на границе стеклянной мембраны с внутренним раствором.

В ходе измерения рН внутренний раствор, а значит, и сумма внутренних скачков потенциала остаются постоянными.

В качестве вспомогательного электрода на схеме изображен так называемый каломельный электрод. Он состоит из ртути, смешанной с трудно растворимой солью ртути- каломелью; все это в растворе хлористого калия, в данном случае насыщенном. Потенциал вспомогательного электрода при измерении рН также не меняется, так как он зависит от концентрации ионов хлора, которая около ртути задана и остается постоянной.

Вспомогательный электрод соединен с исследуемым раствором ключом с насыщенным раствором хлористого калия. Роль этого ключа – обеспечивать проведение тока между исследуемым раствором и вспомогательным электродом, стабилизировать и свести к минимуму потенциал на этой границе.

Графически зависимость э.д.с. гальванического элемента со стеклянным и вспомогательным электродами от рН (“характеристика”) в области водородной функции стеклянного электрода представляет собой прямую линию. В очень кислых растворах могут наблюдаться “кислотные ошибки”, в очень щелочных растворах “щелочные ошибки” т.е кривая отклоняется от линейного хода. Положение этих отклонений зависит от сорта стекла и природы ионов. Уравнение этой прямой

E= a+blga H + = a- bpH.

Здесь b=(RTF) . 2,303; R- газовая постоянная; T- температура (в градусах абсолютной шкалы Кельвина); F- число Фарадея; 2,303= ln 10- модуль перехода от натуральных логарифмов к десятичным.

Такое уравнение означает, что прямая отсекает на оси э.д.с. (ордината), проходящей через рН=10, отрезок, равный а мв , и идет под углом, тангенс которого равен b , . Положение прямой в координатах E-рН для каждого электрода устанавливается с помощью калибровки по стандартным растворам с известным и устойчивым значением рН- буферным растворам. Иногда для калибровки бывает достаточно одного раствора, но лучше, чтобы их было не менее двух. Установив положение прямой, можно далее по графику или по откалиброванной таким образом шкале прибора узнать рН любого раствора, если опустить в него откалиброванный стеклянный электрод с тем же вспомогательным электродом, что и при калибровке, и измерить э.д.с.

Происхождение потенциала стеклянного электрода можно представить так. Когда электрод помещается в раствор, в поверхностные слои электродного стекла интенсивно проникают ионы содержащегося в стекле щелочного металла, например, натрия или лития. Способность к такому обмену в сильной степени зависит от химического состава стекла. Разработаны стекла, в которых практически все ионы щелочного металла в поверхностном слое могут быть замещены ионами водорода( даже при очень малой их концентрации в растворе). Энергетическое состояние ионов в стекле и в растворе различно. Это приводит к тому что ионы водорода так распределяются между стеклом и раствором, что поверхности этих сред приобретают противоположные заряды, а между стеклом и раствором возникает разность потенциалов. Величина этой разности потенциалов зависит от рН, потому что стремление ионов водорода перейти в стекло зависит от их концентрации в растворе. Чем она больше, тем больше это стремление.

Возникающая разность потенциалов так направлена что она уменьшает стремление ионов водорода переходить в стекло. При определенной концентрации ионов водорода в растворе между стремлением их переходить в стекло и электрическими силами, которые приходится им преодолевать установится равновесие. При этом переход ионов Н + из раствора в стекло будет осуществляться с той же скоростью, что и обратный переход из стекла в раствор. Э.д.с. гальванического элемента, которую мы измеряем, включает в себя этот потенциал стеклянного электрода и находится в линейной зависимости от рН в определенном, зависящем от состава стекла диапазоне значений. В этом диапазоне наличие других ионов в растворе не сказывается на показаниях электрода.

От других индикаторных рН — электродов стеклянный электрод отличается надежностью, высокой точностью измерений, устойчивостью к химическим воздействиям, в том числе со стороны сильных окислителей и восстановителей, и к “отравляющим” загрязнителям. Датчик, включающий стеклянный и вспомогательный электроды, в сочетании с электронным прибором (рН-метром) применяется в линиях автоматического контроля и регулирования процессов. Электрический сигнал рН-метра может быть преобразован в команду, по которой процесс может быть ускорен или замедлен, может быть добавлен нужный реактив и т.п.

До недавних пор широкое использование всех этих преимуществ стеклянных электродов сдерживалось их сравнительно высоким электрическим сопротивлением, что заставляло делать эти электроды очень тонкими (толщиной до 0,05 мм и диаметром до 15 мм) и потому хрупкими – не притронуться, а также сравнительно узким интервалом рН, в котором они работали как индикаторные рН-электродв.

В сильно кислых и щелочных растворах простая зависимость потенциала стеклянных электродов от рН нарушается и на потенциал их влияют другие ионы.

Преодолеть эти недостатки помогла, с одной стороны, разработка новых составов электродных стекол с расширенным рабочим интервалом рН; с другой стороны, общий прогресс электроники, позволивший создать такие приборы, измеряющие э.д.с. элементов, для которых высокое сопротивление не помеха. Это позволило делать электроды не очень тонкими (до 0,2 – 0,3 мм), сравнительно небольшими, выдерживающими перепад давлений и температуры, механическую очистку, соприкосновение с твердыми частицами и т.д., т.е. снять старые ограничения на их применение в технике, почвенных исследованиях и т.п.

Разработки новых электродных стекол были подготовлены исследованиями ученых 30-40-х годов.

В 1937 г. Б.П. Никольским была предложена ионообменная теория стеклянного электрода. Эта теория была быстро принята большинством исследователей, нашла приложение во многих работах и получила дальнейшее развитие.

Новые составы стекол для стеклянных электродов разрабатывали: Ленинградский университет (Б.П. Никольский, М.М. Шульц, А.И. Парфенов, Н.В. Пешехонова), Ленинградский технологический институт имени Ленсовета (К.С. Евстропьев, О.В. Мазурин), московские институты: ВНИИ автоматики Министерства черной металлургии (А.С. Беневольский, В.П. Юхновский), Государственный институт стекла (Г.С. Богданова и другие), Тбилисские СКБ аналитического приборостроения (В.А. Долидзе, В.М. Тарасова и др.).

Сотрудниками ВНИИАчермет, ЛГУ и СКБ АП была обоснована необходимость и намечены пути создания специального набора электродных стекол.

В зависимости от требуемого интервала кислотности растворов, в котором буду работать стеклянные электроды, их типы маркируют индексом “К” — кислотные, “У” — “универсальные” или “Н” — нормальные – для среднего интервала рН и “Щ” — для щелочных сред. По температуре – низкотемпературные (НТ – 5-20 о С), среднетемпературные (СТ 15-60 о С), высокотемпературные (ВТ 50-100 о С). Например, УНТ, ЩВТ, КСТ и т.д. Типы электродных стекол различаются в основном содержанием входящего в них щелочного компонента. В современных стеклах для рН-метрии в качестве такового употребляется окись лития Li 2 O.

Основное требование к стеклам типа НТ – их высокая электропроводность. Ток через стекло переносится ионами лития. Значит, их должно быть сравнительно много. Рекомендуется в стекла типа НТ вводить Li 2 O в количестве 28-33 мол.%. Агрессивное воздействие среды на стекло при низких температурах выражено в слабой степени, и некоторое снижение химической устойчивости стекла, вызванное увеличением концентрации Li 2 O, здесь не страшно.

В стеклах СТ концентрация окиси лития должна быть несколько ниже – 25-27%. И, наконец, в стеклах, предназначенных для электродов, работающих в условиях высоких температур (ВТ), она минимально возможная – 20-24%. Этого достаточно, чтобы обеспечить необходимую электропроводность стекла, которая при повышении температуры тоже повышается, и в то же время сообщить стеклу необходимую устойчивость к агрессивному воздействию горячих растворов. Этот эффект еще усиливается добавками некоторых оксидов, таких, как TiO 2 , Zo 2 .

Функционирование электродов в том или ином интервале кислотности (К, Н или Щ) обеспечивается специальными добавками окислов Cs 2 O, CaO, La 2 O 3 , Nd 2 O 3 .

Теоретическими исследованиями, а также систематическим изучением зависимости электродных свойств стекол от их состава были значительно расширены области применения стеклянных электродов.

Определенные изменения состава стекла (введением в него окислов алюминия и бора) можно получить стекло, электроды из которого в широком интервале рН начинают отвечать не на изменение рН, а на изменение концентрации (активностей) ионов натрия, калия, лития, аммония, серебра и др.

О возможности получения стеклянных электродов для измерения активностей металлических ионов было известно еще в 30-х годах, но только в середине 50-х годов в Ленинградском университете были разработаны первые стекла для измерения активности натрия и изготовлены первые образцы электродов. Они сразу же нашли применение в работах почвоведов и гидрохимиков.

Особенно велика потребность в ионометрии у медиков и биологов. Велика не столько по количеству требуемой аппаратуры, сколько по разнообразию ее применений. Уж очень заманчивы раскрывающиеся перспективы – проследить за ионными процессами, происходящими в организме, не вмешиваясь в них.

Очень заинтересовало медиков и биологов возможность создания прибора-анализатора ионного (рН, pNa, pK, pCa, pCl) и газового (О 2 , СО 2 ) состава крови, причем в одной и той же пробе или непосредственно в кровеносном сосуде.

Разработаны и применяются системы для контроля кислотности непосредственно в пищеварительном тракте человека. Вместо процедуры глотания зонда с последующей откачкой содержимого и определением концентрации кислоты в нем в некоторых клиниках предлагают глотать зонд с индикаторным рН-электродом – сурьмяным или стеклянным. Внутри резинового зонда проходят провода, связывающие датчик (рН-оливу) с измерительным прибором. Датчиком может быть несколько, для разных мест пищеварительного тракта.

Теория стеклянного электрода имеет более общее значение, так как сами стеклянные электроды входят в еще более общий тип ионообменных электродов, т.е. электродов, в образовании потенциала которых существенную роль играют реакции ионного обмена между материалом электрода и раствором.

Процессом ионного обмена заключается в том, что некоторое вещество – ионообменик, ионит, помещенное в раствор (или расплав), посылает в него свои подвижные ионы в обмен на ионы того же знака заряда. Новые ионы занимают в ионите места старых, в строго соответствии с принципом электронейтральности. Обмен происходит в эквивалентных количествах. Структура ионита при этом существенно не изменяется.

Ионообменными свойствами в какой то мере обладают материалы самого разнообразного происхождения. Процессы ионного обмена постоянно происходят в горных породах, морских и речных песках, в почвах, илах.

Ионит, как правило, — твердое вещество * , обладающее полимерным каркасом (матрицей). Каркас имеет заряженные тем или иным знаком узлы — фиксированные ионы ** . Каркас катионита несет отрицательно заряженные узлы и представляют собой, таким образом, гигантский полианион; каркасанионита заряжен положительно и представляет собой поликатион. Заряд каркаса, т.е. заряд фиксированных ионов, компенсируется зарядами подвижных ионов противоположного знака – противоинов. Противоионы попадают при его синтезе и могут быть полностью или частично заменены на ионы раствора того же знака. Вместе с противоинами из раствора могут попасть в ионит и подвижные ионы того же знака заряда, что фиксированные ионы – коионы.

Из практических важных характеристик ионитов отметим следующие. Это прежде всего ионообменная емкость – способность обменять то или иное число противоионов на ионы раствора. Теоретически емкость определяется как концентрация фиксированных ионов в единице объема ионита. В ионит могут проникать противоионы и коионы, причем противоионов поглощается всегда больше, чем коинов. То, насколько их больше, определяет одну из важнейших характеристик ионита – селективность поглощения. Заметное влияние на эту величину оказывает концентрация внешнего раствора. Из более концентрированного раствора и коиноны поглощаются в большей степени, т.е. селективность поглощения уменьшается.

Если раствор содержит несколько сортов ионов одного знака и каждый из них может играть роль противоиона, а ионит явно “предпочитает” один из них, то говорят о специфичности поглощения по отношению к этому сорту ионов сравнительно с другими. Количественной мерой специфичности поглощения является “константа обмена” — К обм .

Полупроницаемые мембраны – это соли материала, которые вследствие особенностей своего строения и химического состава обладают способностью пропускать через себя одни вещества и задерживать другие. Такие мембраны широко распространенны в природе, и их роль чрезвычайно важна. Оболочки всех живых клеток и их более мелких составных частей, кожа животных, почвенный покров, фильтрующий слой песка или гравия на водопроводной станции, слой озона в верхних слоях атмосферы и сама атмосфера – все это в определенном масштабе может рассматриваться как полупроницаемая мембрана.

Искусственные ионитовые мембраны – пленки, листы, трубки из ионитов – появились в 1950г. Их сразу начали интенсивно изучать и использовать. Одно из главных применений мембраны нашли в электродиализе. Электродиализ – проникновение ионов через мембрану под воздействием приложенного электрического напряжения. Применяется для очистки растворов от электролитов; с другой стороны, для повышения концентрации электролитов в растворе или для замены в растворе одного иона на другой.

Устройство ионитовых мембранных электродов не сложно. Обычно это – мембрана из соответствующего материала, приклеенная к концу какой-либо изолирующей трубки (стекло, пластмасса). Чтобы изготовить мембрану, материал смешивают с инертной связкой и затем спекают или отливают изделие нужной формы (“гетерогенные”, неоднородные мембраны). Бывают и мембраны, состоящие из одного ионита, без связки – гомогенные. Жидкие ионообменники помещают между двумя инертными мембранами, например из целлофана, играющими роль механической поддержки, но не препятствующими прохождению ионов. Этим слоем ионита разделяют два раствора. Внутрь одного отделения полученной камеры наливают стандартный раствор и опускают стандартный электрод – токоотвод. Система мембранного электрода готова.

Поскольку ионообменики бывают катионо- и анионообменниками, возможности ионометрии значительно расширяются. Электрометрически могут быть определены также и анионы. При этом если для одних анионов, напрмер, хлора, брома, иода, сульфат-иона, имеются электроды и неионобменного происхождения (так называемые электроды второго рода, или осадочные), то концентрация таких анионов, как нитрат- и нитрит-ионы, перхлорат-ион, может быть в настоящее время электрометрически определена с помощью только анионообменных электродов.

Применение электродов из некоторых жидких ионообменников открывает большие перспективы в определении отдельных ионов (К + ,Са 2+ ) вследствие высокой специфичности этих веществ к названным ионам.

Согласно теории в той области концентраций, где потенциал соответствующего индикаторного электрода П инд определяется только одним сортом однозарядных ионов, уравнение для э.д.с. элемента, построенного из такого электрода и из вспомогательного, будет иметь уже знакомый нам вид:

Е = П инд – П всп = a ± blga b

Знак + или – сответствует катионам или анионам. Если ионы двухзарядные, например Са 2+ или SO 2- , то формула имеет вид:

Влияние однозарядного иона второго сорта (“мешающего”) на потенциал ионообменного электрода выражается общей формулой:

E = a + blg(a b + K сп b-a a a )

Константа специфичности функции K сп b-a – коэффициент, содержащий в себе константу ионообменного равновесия ионов А и В в ионите:

K сп b-a = U a /U b K сп b-a

Вообще теория механизма диффузии ионов в твердом теле достаточно хорошо разработана лишь для простых ионных кристаллов строго регулярной структуры, типа каменной соли, галогенидов серебра и т.п. В них можно выделить 3 главных механизма диффузии.

  1. Диффузия по вакантным узлам решетки. Ион перескакивает из одной группы к другому аналогичному узлу, где место противоиона было не занято (т.е. была вакансия, “дырка”). Этот процесс, повторяясь, приводит к перемещению ионов в одном направлении, а вакансий – в другом, противоположном. Такой механизм диффузии называют “вакансионным”, или “дырочным”.
  2. Ион может заранее отдиссоциировать от узла и занимать положение, не связанное с его пребыванием возле какого-либо определенного узла, находиться между узлами – в междоузлиях. Выход из этого положения и миграция в другое, аналогичное также связаны с некоторыми энергетическими затратами, но они меньше, чем в предыдущем случае. Такой механизм миграции называют “межузельным”.
  3. Третий механизм объединяет черты двух предыдущих. Ион из междоузлия попадает в занятый другим ионом узел и выбивает другой из лунки или как бегун передает эстафетную палочку, оставаясь сам на месте. Этот механизм так и называется – “крокетный”, или “эстафетный”.

Иониты, за исключением, может быть, цеолитов, не принадлежат к числу твердых тел регулярной структуры. Хотя в последнее время синтезируется кристаллические неорганические иониты, в большинстве своем иониты – аморфные вещества, гелеобразный характер которых усугубляется их склонностью к набуханию в воде и других растворителях. Поэтому закономерности, установленные для регулярных кристаллических тел, нельзя прямо переносить на тела нерегулярной аморфной структуры. Однако некоторое их подобие можно допустить хотя бы потому, что в любом аморфном теле сохраняются элементы кристаллической структуры – “ближний порядок”. Кристаллические тела с твердыми аморфными ионитами сближает также некоторое сохранение жесткости и компактности структуры последних, вызывающие, как и в кристаллах, пространственные затруднения для движения ионов. Кроме того, возможно, что гетерогенная мембрана имеет более жесткую структуру, чем ионит, из которого она сделана. Во всяком случае энергетические различия между состоянием иона в ионогенной группе, вблизи узла квазирешетки – “как будто бы – решетки” ионита, и состоянием отдиссоциированного иона в междоузлии могут быть достаточно велики.

Из рассмотренных механизмов для мембран из наиболее набухших гелеобразных ионитов наиболее вероятен межузельный механизм; можно предположить, что чем регулярнее и жестче структура ионита (а стекло – один из наиболее компактных и “жестких” ионитов), тем больше вероятность включения и других механизмов. Это зависит также от концентрации фиксированных ионов, природы противоионов и других факторов.

Только по отношению к некоторым ионам удалось создать высокоспецифичные электроды из твердых ионитов. Это, например, стеклянные электроды, специфичные к ионам Н + и Ag + -ионам, резко отличающийся по своей природе от других однозарядных ионов. Для этих ионов можно предположить и механизм переноса, отличающийся от межузельного.

С другой стороны, по отношению к иону, совершенно неподвижному в фазе ионита и на границе мембрана – раствор иона, ионит не может обладать устойчивой электродной функцией. Доля участия ионов в переносе заряда зависит от соотношения их концентраций (энергетический фактор).

Ионный обмен определяет, до какого соотношения активностей ионов А и В в растворе можно “не обращать внимания” на присутствие “постороннего” иона. Только в переходной области от функции иона В к функции иона А на потенциал электрода оказывает соизмеримое влияние оба иона.

Единообразное для всех электродов математическое выражение потенциала предполагает и единообразие измерительного прибора, единообразную обработку его показаний.

Это – огромное преимущество ионометрии перед другими аналитическими методами.

Некоторые представления и выражения ионообменной теории пригодны для описания процессов и явлений, происходящих в живых клетках и тканях. Это представления о проницаемости биологических мембран для различных ионов, возникновение биопотенциалов и связанное с этим распространение нервного возбуждения, а также обмен веществ в организме.

Стеклянный электрод и другие ионообменные электроды здесь являются не инструментом исследования, а полезной моделью. Некоторые аналогии могут быть найдены также и в структуре биоматериалов, с одной стороны, и синтетических ионообменников, с другой.

Электрическая деятельность некоторых клеток позволяет рассматривать их как “живые гальванические элементы”, а специфичность электродных функций материалов неорганического, органического и биологического происхождения в зависимости от изменения активностей отдельных ионов укладывается в сходные ряды. Последнее было установлено американским физиологом Дж. Эйзенманом.

В большинстве электрических процессов участие электронов обязательно, и если до сих пор нам удавалось обойтись без рассмотрения их роли, то это лишь потому, что для процессов, о которых мы вели речь, более характерны ионные переходы.

Однако важнейшая группа процессов их явлений, не имеющих выраженного эклектического характера – химических, биологических, геологических, производственных, — характеризуется именно участием в них электронов, в то время как роль ионов подчиненная. Эта так называемые окислительно-восстановительные процессы. На их долю, по оценкам ряда авторов, приходится около 80% всех химических превращений, происходящих в живой и неживой природе. Среди них горение; дыхание; брожение и другие энергетические преобразования в живом организме; возникновение рудных месторождений и распределение элементов в осадочной оболочке Земли; процессы основной химической, легкой, пищевой, фармацевтической; микробиологической и других отраслей промышленности; гидрометаллургии и т.д.

В наиболее общей форме суть окислительно-восстановительных превращений можно выразить следующим образом.

Окислительные вещества – отнятие у него электронов посредством другого вещества – окислителя. Окислитель со своей стороны присоединяет электроны, подвергаясь, таким образом, восстановлению. Восстановитель отдает электроны окислителю. Как видно из этих определений, окисление и восстановление – строго сопряженные между собой процессы. Один не может идти без другого.

В качестве меры окислительной или восстановительной способности вещества в растворе может быть естественно выбрана активность “свободных” электронов в нем. На самом деле среднее время жизни “свободного” электрона измеряется отрезками порядка 10 -11 – 10 -15 сек. Казалось бы, при этом нечего и говорить о существовании их в растворе. Однако, во-первых, это названы времена жизни какого-то отдельного электрона в процессе его перехода от Red к Ox. Вследствие статического характера превращений, связанного с многочисленностью элементарных актов превращения, число которых выражается единицей с множеством нулей, какое-то количество свободных электронов и выражает вероятность их появления. Во-вторых, некоторые элементарные процессы в растворе могут происходить еще быстрее, чем “гибнет” электрон, и для их осуществления электронов всегда хватает.

Обычно способность химической системы производить какие-либо действия (в данном случае окисление или восстановление) выражают в энергетических единицах и называют “потенциалом” (в данном случае это восстановительный потенциал или окислительный потенциал (ОП). Потенциал – это работа, которую надо произвести, чтобы перевести систему из некоторого состояния, принятого за стандартное, в данное состояние.

Связь между активностью компонентов системы и потенциалом обычно логарифмическая; коэффициентом пропорциональности между логарифмом активности или концентрации и потенциалом, выраженным в электрических энергетических единицах, является множитель b = 2,303 RT / F:

ОП = const – b lg a e = const – b lg K – b/n lg a Red /a Ox = (ОП) 0 ± 1 + b/n lg a Ox /a Red

Здесь (ОП) 0 – значение ОП для стандартного состояния, в котором a Red = a Ox = 1.

ОП, таким образом, линейно связан с логарифмом активности свободных электронов и выражает окислительную способность раствора, определяемую природой системы (константами, входящими в (ОП) 0 ), заданными соотношением активности a Ox — и a Red -форм и температурой раствора.

Окислительную способность раствора, выражаемая его ОП, тем больше, чем меньше активность свободных электронов в нем. Она тем больше, чем больше в растворе окислителей и меньше восстановителей.

Заметим, что применяемые часто термины “окислительно-восстановительный потенциал” или “редокс-потенциал”, в которых подчеркивается двусторонность всякого редокс-превращения, по существу, не нужны, так как в действительности мы имеем дело всегда либо с окислительной, либо с восстановительной способностью раствора по отношению к какому-то другому раствору.

ОП раствора можно рассчитать или измерить. И при измерениях и при расчетах сравнивают соответственно реально или мысленно ОП исследуемой системы с ОП некоторой редокс-системы, принятой за стандарт: (ОП) 0 станд є 0. В качестве стандартной выбрана редокс-система газообразный водород – ион водорода:

Если водород подается в раствор при давлении 1 атм, а активность Н + в растворе а Н + = 1 (рН = 0), то (ОП) 0 Н + /Н2 є 0.

Непосредственное экспериментальное сравнение с ОП водородной системы часто по ряду причин бывает затруднительно. Тогда применяют другую систему Ох 2 /Red 2 , чей ОП относительно водородной системы точно известен. Исследуемую систему Ох 1 /Red 1 приводят в равновесие с системой Ох 2 /Red 2 :

Ox 1 + Red 2 “ Ox 2 + Red 1

В состоянии равновесия между обеими системами активности электронов в них одинаковы, так как они находятся в одном растворе. Их ОП также равны, а так как ОП второй системы предполагается известным, то становится известным и ОП 1 . На этом соотношении основаны методы измерения ОП.

Практически сравнение ОП исследуемой и стандартной систем может быть проведено двумя способами: калориметрически (с помощью цветных редокс-индикаторов) или электрометрически. Мы видим здесь полную аналогию с рН-метрией.

В качестве редокс-индикаторов употребляют некоторые органические красители, природные или синтезированные искусственно, Ох- и Red-формы которых имеют разную окраску. Цвет раствора будет зависеть от соотношения концентраций обеих форм, т.е. от активности электронов, т.е. от ОП изучаемой системы, к которой добавлен индикатор. Чтобы индикатор не внес при этом заметных изменений в саму изучаемую систему, его вводят в относительно малых, так называемых “индикаторных”, количествах.

Примером редоксметрического индикатора является метиленовая синь, на основе которой делают синие чернила. Они потому синие, что делаются и хранятся в соприкосновении с кислородом воздуха – преобладающая при этом Ох-форма этой системы синего цвета. Чернила можно обесцветить, пропуская через них водород, приливая муравьиную кислоту, присыпая щавелевую кислоту или лимонную и тому подобные восстановители.

Даже недостатки калориметрического метода рН-метрии и редоксметрии один и те же: необходимость отбирать пробы или “пачкать” индикатором весь раствор; невозможность или затруднительность применения в мутных или окрашенных жидкостях; адсорбция индикаторов на стенках сосуда или на твердых частицах и искажение этим данных о величине измеряемого ОП; трудность автоматизации контроля процесса на этой основе.

И как в рН-метрии, в редоксметрии этих недостатков лишен электрометрический метод определения ОП, в котором роль индикатора выполняет потенциал некоторого электрода.

Электрод мы не должны рассматривать в данном случае как некоторую редокс-систему, обладающую определенной активностью электронов.

Однако вследствие того что активности электронов в растворе и материале электрода, который представляет собой по отношению к раствору иную фазу, в общем случае не равны, возникает тенденция к переходу электронов из той фазы, где их активность больше, в ту, где она меньше. Но уход электронов, несущих отрицательный заряд, связан с заряжением фазы относительно другой. Вступают в игру электрические силы, препятствующие сколько-нибудь значительному заряжению фазы в целом. Электрическая разность потенциалов, таким образом, оказывается вполне определенным образом связанной с различием активностей электронов в электроде и растворе. эЛектрод здесь является некоторым резервуаром электронов. И только такой должна остаться его роль в идеальном случае.

Такими свойствами могут обладать металлы. Действительно, кристаллические решетки металлов построены из ионов металла, а электроны присутствуют там в виде электронного газа. Ионы металла Ox 2 -форма, а металл в целом — Red 2 -форма. Однако не всякий металлический электрод может играть роль индикаторного. Для этого не годятся растворимые металлы, активно взаимодействующие с раствором своим материалом, посылающие в раствор свои ионы.

Всем требованиям отвечают электроды из так называемых благородных металлов: платины, золота, иридия и т.п. Электроды из этих металлов и применяются наиболее часто в редоксометрии.

Если исследуемую редокс-систему удается привести в равновесие с таким электродом, то в этом, и только в этом случае измеряемый электрический потенциал электрода будет равен ОП системы.

К сожалению, лишь немногие неорганические и органические редокс-системы обладают способностью приходить в равновесие с электродами из благородных металлов (являются обратимыми по отношению к ним). Среди них системы Fe 3+ /Fe 2+ в кислых растворах (ферри/ферро), ферриферроцианиды калия в нейтральных, слабокислых и слабощелочных растворах, системы хлор/ион хлора, бром/ион брома, йод/ион йода; из органических хинон гидрохинон и их производные и некоторые другие системы. Концентрированные и даже довольно разбавленные растворы этих систем обладают буферностью по электронам, другими словами, устойчивостью и определенностью по отношению к ОП. На основе любой из этих систем могут быть построены стандарты ОП, так как их ОП могут быть легко измерены относительно главной стандартной системы Н + /Н 2 .

Большинство других систем не достигают истинного равновесия с электродом, и измеряемый электродный потенциал не равен ОП системы. Это ставит перед редоксметрией определенные трудности, преодолеть которые не всегда удается * .

Есть случаи, когда электрод либо никак не реагирует на редокс-превращение, либо вызывает в самой редокс-системе побочный процесс, искажающий ее первоначальный ОП и изменяющий ее.

Так, например, упомянутые электроды из благородных металлов способны каталитически разлагать так называемые перекисные системы (перекись водорода и т.д.). ясно, что в этих случаях применять их попросту нельзя.

Существуют и другие электродные системы, которые играют роль индикаторных в редоксметрии: это электроды из различных модификаций углерода, некоторые металлы и сплавы (титан, цирконий, вольфрам, даже нержавеющая сталь и ртуть). Однако область их применения ограничена еще больше, чем область применения электродов из благородных металлов. Они могут служить индикаторными лишь в определенных растворах.

В качестве одной из самых общих причин, ограничивающих применение этих электродов в целях редоксметрии, может быть названа недостаточная индифферентность электрода по отношению к раствору. Даже электроды из благородных металлов, например в растворах с высокими ОП, могут, грубо говоря, окисляться.

Таким образом, желательным является поиск новых электродных систем, которые могли бы быть свободными от указанных недостатков. Шагом в этом направлении является открытие в 1963г. в Ленинградском университете редоксметрических стеклянных электродов (р.с.э.). Р.с.э. не пригодны ни для измерения рН, ни для измерения рМ, но способны обратимо отвечать свои потенциалом на изменение ОП раствора. Это связано с тем, что они изготавливаются из стекол особого рода, перенос тока через которые осуществляется не ионами, а электронами. Эти стекла синтезируются на основе окислов элементов, способных менять свою валентность (железо, титан), и обладают выраженным полупроводниковым характером. В растворах буферных редокс-систем р.с.э., так же как и все вышеупомянутые электроды, способны показывать правильные значения ОП.

Однако обнаружены и отличия свойств р.с.э. от других редоксметрических электродов, которые в определенных условиях могут быть расценены как их преимущества.

Главной особенностью р.с.э. является нечувствительность их потенциала к кислороду. Надо сказать, что кислородная редокс-система так или иначе присутствует во всех растворах, находящихся в соприкосновении с воздухом (аэрируемых), и, с одной стороны, может изменить соотношение Ох- и Red-форм самой системы в растворе, а с другой стороны, в какой-то мере навязать электроду свой потенциал. Любому электроду, кроме стеклянного, точнее, р.с.э. Этот факт и позволяет р.с.э. найти применение для измерения ОП в тех случаях, когда нужно знать ОП самой системы, исключая потенциал, навязываемый электроду кислородом.

Другой особенностью р.с.э. является их высокая устойчивость к воздействию сильных окислителей, с одной стороны, и отсутствие заметного каталитического воздействия на неустойчивые (например, перекисные) растворы, с другой стороны.

И еще одна важная особенность. Электроды из благородных металлов и другие редоксметрические индикаторные электроды подвержены “отравлению” так называемых каталитическими ядами. Интересно, что эти яды отравляют и живые организмы: сильная кислота, мышьяк, сероводород… Платиновый и другие электроды в присутствии этих вещвств теряют чувствительносьт к ОП, в то время как р.с.э. нормально реагируют на ОП в присутствии этих веществ.

Среди преимуществ р.с.э. отметим также их дешевизну по сравнению с платиновыми или золотыми электродами. Р.с.э. применяются с теми же приборами: потенциометрами, рН-метрами, самописцами, что и рН-метрические и ионометрические электроды, и в тех же системах датчиков. Они имеют те же формы и габариты, но по внутреннему устройству проще.

Наконец, введением в стекло в большой концентрации окислов железа или некоторых других элементов переменной валентности стекло лишается способности изменять свой потенциал как при изменении концентрации ионов Н + , так и ионов М + , и приобретает способность реагировать на изменение отношения концентраций окислителей и восстановителей.

Каждый класс стеклянных электродов находит свои специфические применения. Так расширить область применения стеклянных электродов удалось на основе углубленного изучения зависимости электродных свойств стекла от состава и структуры стекла. Как уже говорилось, установлены и “обратные связи”, т.е. с помощью исследования свойств стеклянных электродов делаются суждения о структуре самого стекла.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Глава I. Электрохимические методы анализа

Глава I. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Электрохимические методы анализа (ЭХМА) основаны на использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве, и измерении электрического параметра системы (разности потенциалов, силы тока, количества электричества, омического сопротивления, электропроводности и др.), значения которого функционально связаны с составом и концентрацией (специфическими свойствами) раствора, т. е. пропорциональны количеству определяемого вещества в анализируемом растворе. Эти зависимости используют для количественного и качественного определения веществ.

Основные понятия электрохимии

Электродный процесс (электрохимическая реакция) – гетерогенная реакция, протекающая между компонентами электропроводящих фаз (электрод – раствор), в ходе которой ионы или электроны проходят через границу раздела фаз, и на межфазной границе устанавливается разность электрических потенциалов, называемая электродным потенциалом.

Электродный процесс включает две обязательные стадии: массоперенос – доставку вещества к электроду за счет диффузии, миграции (движения ионов под действием электростатических сил) и конвекции и собственно электрохимическую реакцию (разряд-ионизацию).

При равновесии электрохимическая реакция протекает в обоих направлениях с одинаковыми скоростями, ток в замкнутой гальванической цепи отсутствует, электродный потенциал достигает равновесного значения. В отсутствие равновесия в результате электрохимической реакции через ячейку протекает электрический ток, при этом электродный потенциал отклоняется от равновесного – электрод поляризуется.

Электрохимическая ячейка чаще всего состоит из двух или трех электродов (индикаторного или рабочего электрода, электрода сравнения и вспомогательного), погруженных в раствор электролита.

Индикаторный электрод – это электрод, на котором протекает собственно электрохимическая реакция окисления или восстановления. Это легкополяризуемый электрод, он должен реагировать на изменение концентрации определяемого вещества.

Электрод сравнения – неполяризуемый электрод, потенциал его должен быть устойчивым во времени. Электрод сравнения служит для создания измерительной цепи и поддержания постоянного значения потенциала индикаторного электрода.

Используемый в трехэлектродной ячейке вспомогательный электрод (противоэлектрод) вместе с рабочим электродом включен в цепь, через которую проходит электрический ток. В состав электролитической ячейки могут входить два идентичных электрода, выполняющих одинаковую функцию.

Электрохимические методы анализа можно классифицировать в зависимости от процессов, происходящих на электродах:

· методы, не связанные с электродной реакцией, измеряемый сигнал является откликом на изменения электрохимических свойств в объеме раствора (кондуктометрия);

· методы, основанные на электродной реакции, в результате которой ток через границу раздела не протекает, и на границе раздела фаз устанавливается равновесный потенциал, величина которого зависит от активности (концентрации) компонентов, участвующих в электродной реакции (потенциометрия);

· методы, основанные на электродной реакции между электродом и приэлектродной частью раствора, в ходе которой электроны или ионы переходят через границу раздела фаз, обусловливая возникновение тока (вольтамперометрия, амперометрия, кулонометрия, электрогравиметрия).

Если электродная реакция не приводит к заметному изменению объемной концентрации раствора, электрохимический метод может быть использован для индикации конечной точки титрования в титриметрии.

В данной главе дается краткое описание теоретических основ, аналитических возможностей и применения некоторых электрохимических методов анализа.

В основе потенциометрических измерений лежит зависимость равновесного потенциала электрода от активности (концентрации) определяемого иона практически в отсутствие тока между индикаторным электродом и электродом сравнения (гальванический элемент), погруженными в анализируемый раствор, при замыкании гальванической цепи.

Измеряемое напряжение, таким образом, равно:

Возникновение электродного потенциала связано с электродным процессом на границе индикаторный электрод ‑ раствор, содержащий окислительно-восстановительную пару:

Ox + п е Red,

либо восстановленную форму обратимой окислительно-восстановительной системы

Мn+ + п е M 0

При установлении динамического равновесия электрод приобретает равновесный потенциал. Реакции, протекающие на границе раздела электрод-раствор, называются потенциалопределяющими, а ионы Ox, Red ‑ потенциалопределяющими ионами. Потенциал индикаторного электрода зависит от активности потенциалопределяющих ионов по уравнению Нернста:

Еº ‑ стандартный электродный потенциал, В.

Потенциометрию применяют как для непосредственного определения концентрации (активности) вещества, находящегося в растворе (прямую потенциометрию), так и для определения точки эквивалентности при титровании (потенциометрическое титрование), измеряя потенциал индикаторного электрода в зависимости от добавленного титранта.

1.1. Индикаторные электроды в потенциометрии

Для потенциометрических измерений используют два основных типа индикаторных электродов: металлические и мембранные (ионоселективные) электроды.

1.1.2. Мембранные (ионоселективные) электроды

Ионоселективные электроды (ИСЭ) – это сенсоры (чувствительные элементы, датчики), потенциал которых линейно зависит от логарифма активности определяемого иона в растворе, они позволяют избирательно определять активность одних ионов в присутствии других.

Потенциал мембранного электрода возникает за счет обмена заряженными частицами (ионами) между раствором и мембраной электрода. Полупроницаемая мембрана отделяет внутреннюю часть электрода (внутренний раствор) от анализируемого (внешнего) раствора и обладает способностью пропускать преимущественно ионы одного вида. Активность ионов, к которым мембрана проницаема, во внутреннем растворе постоянна.

При потенциометрических измерениях с использованием ИСЭ измеряют ЭДС следующей ячейки:

Электрод сравнения 1

Внешний (анализируе — мый) раствор

Электрод сравнения 2

После погружения электрода в анализируемый раствор начинается движение иона А+, проникающего через мембрану, в направлении его более низкой активности. Так как ионы несут заряд, то из-за различия активностей ионов А+ в растворе и мембране на обеих сторонах мембраны возникают граничные потенциалы Е1 и Е2, препятствующие дальнейшему перемещению ионов. С помощью двух электродов сравнения, помещенных во внешний и во внутренний растворы можно измерить разность граничных потенциалов, или так называемый мембранный потенциал Ем :

Так как активность ионов А+ во внутреннем растворе постоянна, потенциал мембранного электрода Ем линейно зависит от логарифма активности иона А+ в анализируемом растворе:

Если раствор кроме определяемого иона А содержит посторонние ионы K, потенциал ионоселективного электрода описывается уравнением Никольского (модифицированным уравнением Нернста):

,

где const – константа, зависящая от значений стандартных потенциалов Е0 внутреннего и внешнего электродов сравнения и от природы мембраны электрода; aA и nA, aK и nK – активности и заряды основного (потенциалопределяющего) и постороннего ионов соответственно; – потенциометрический коэффициент селективности электрода по отношению к потенциалопределяющему иону A в присутствии постороннего иона K. Коэффициент селективности можно определить экспериментально, чем меньше его величина, тем более селективен электрод по отношению к определяемому иону.

В соответствии с природой активного материала мембраны различают: первичные ИСЭ — а) электроды с жесткой матрицей – стеклянные; б) электроды с твердой мембраной; ИСЭ с подвижными носителями — электроды с жидкими мембранами на основе ионообменников и нейтральных переносчиков; сенсибилизированные (активированные) – газочувствительные, ферментные электроды. При этом классические электроды с внутренним раствором и электродом сравнения являются электродами первого поколения, а электроды с твердым токоотводом (твердотельные) – электродами второго поколения

Электроды с жесткой матрицей. Стеклянный электрод. Самым известным примером стеклянного электрода является электрод для измерения рН растворов. Он состоит из стеклянного шарика, который является тонкой рН-чувствительной мембраной, изготовленной из стекла особого состава. Например, стекло марки «корнинг» имеет следующий состав: 22% Na2O, 6% СаО, 72% SiO2.

Рис. 1.1. Стеклянный электрод для измерения рН:

1 – стеклянная рН-чувствительная мембрана;

2 – 0.1 М раствор HCl, насыщенный AgCl;

3 – серебряная проволочка;

4 – стеклянная трубка;

Внутренним раствором служит раствор соляной кислоты с определенным значением рН (обычно 0,1 М НСl), насыщенный хлоридом серебра. Внутрь помещается серебряная проволочка, образуя хлоридсеребряный электрод сравнения (рис. 1.1.). Чувствительностью к ионам водорода обладает только хорошо вымоченная мембрана.

Ионообменная реакция сводится к обмену ионами водорода между внешним раствором и стеклом (NaGl):

Н+ + Na+Gl‾ Na+ + H+Gl‾

раствор тв. раствор тв.

Поскольку активность ионов водорода во внутреннем растворе постоянна, потенциал стеклянного электрода становится мерой активности ионов водорода во внешнем растворе, т. е. электрод обладает водородной функцией:

В величину const входят потенциалы внешнего и внутреннего электродов сравнения и так называемый потенциал асимметрии, возникающий в результате различных механических и химических воздействий на внешнюю и внутреннюю поверхность мембраны, величина его меняется в процессе эксплуатации электрода. Правильные результаты можно получить при регулярной градуировке стеклянного электрода по стандартным буферным растворам. Для точных измерений необходимо градуировать электрод по двум растворам.

Изменяя состав стекла, можно получить мембраны, обладающие пониженной селективностью к ионам Н+ и высокой селективностью к другим ионам. Созданы электроды для определения ионов натрия, калия и др.

Твердые электроды. В качестве мембран в твердых электродах используются монокристаллы (LaF3, Ag2S) и мембраны, полученные прессованием или плавлением порошкообразных соединений или их смесей (Ag2S, Ag2S — AgCl, Ag2S — CuS), с ионной проводимостью по катиону или аниону. Для кристаллических мембран характерна высокая специфичность, обусловленная тем, что размер, форма и распределение заряда вакансии решетки позволяет занять это место только определенному подвижному иону. Наиболее совершенным электродом с кристаллической мембраной является фторид-селективный электрод, широкое распространение получил сульфидсеребряный электрод для определения ионов серебра и сульфид-ионов. В настоящее время среди электродов с кристаллическими мембранами распространение получили твердотельные электроды (электроды с твердым контактом), изготовленные без внутреннего раствора.

Жидкостные электроды имеют в качестве мембраны раствор ионообменника или «нейтрального переносчика» в органическом растворителе, не смешивающемся с водой; жидкость мембраны удерживается на пористом полимере и селективно реагирует с определяемым ионом. Электроды с жидкими мембранами позволяют проводить прямое потенциометрическое определение некоторых катионов: К+,Са2+, смеси Са2+ и Mg2+ и т. д., а также ряда анионов: Сl‾, NО3‾ , СlО4‾ и т. д. Разработан ряд ИСЭ для определения ионных поверхностно-активных веществ.

Газочувствительные электроды имеют газопроницаемую мембрану из пористого гидрофобного пластика для отделения анализируемого раствора от тонкой пленки промежуточного раствора электролита. Он взаимодействует с определяемым газом, при этом изменяется какой-то параметр промежуточного раствора, например рН, что и фиксирует ионоселективный электрод. Отклик ионоселективного электрода пропорционален парциальному давлению определяемого компонента в анализируемом газе. Известны электроды для определения SO2, H2S, СO2, NH3 . Газочувствительные электроды не относятся к истинно мембранным электродам, поскольку через мембрану не протекает электрический ток.

Ферментные электроды – это датчики, в которых ионоселективный электрод покрыт пленкой, содержащий фермент, способный вызвать реакцию органического или неорганического вещества (субстрата) с образованием веществ (ионов, молекул), на которые реагирует электрод. Существуют электроды для определения глюкозы, мочевины и др.

1.1.1. Металлические электроды

Возникновение потенциала металлического электрода обусловлено электронообменными процессами на межфазной границе. Различают активные и инертные металлические электроды.

Активные металлические электроды изготовляют из металлов, образующих восстановленную форму обратимой окислительно-восстановительной системы (Ag, Pb, Cu, Cd), это электроды первого рода.

Электроды первого рода представляют собой металлическую пластинку или проволоку, погруженную в раствор хорошо растворимой соли этого металла (серебро в растворе нитрата серебра, медь в растворе сульфата меди). Потенциал такого электрода зависит от активности собственных ионов в растворе, непосредственно участвующих в электродной реакции переноса электронов, например:

Ag+ + e → Ag°

Такие электроды можно использовать лишь в тех растворах, где они не участвуют в химических реакциях с растворителем или электролитом фона, поэтому для селективного определения ионов металлов их используют реже, чем ИСЭ.

Инертные металлические электроды изготовляют из благородных металлов (Pt, Au, Ir и др.). Они служат переносчиками электронов от восстановленной формы к окисленной, и их потенциалы являются функцией соотношения активностей окисленной и восстановленной форм полуреакции. Эти электроды применяют в потенциометрическом окислительно-восстановительном титровании.

К электронообменным электродам, кроме металлических, относят водородный и хингидронный электроды.

1.1.2. Электроды сравнения

Электрод сравнения должен обладать постоянным потенциалом, не зависящим от состава исследуемого раствора. В качестве электродов сравнения чаще используют хлоридсеребряный и насыщенный каломельный электроды. Хлоридсеребряный электрод состоит из серебряной проволочки, электролитически покрытой слоем хлорида серебра и погруженной в раствор хлорида калия. Для полуреакции

AgClтв +e- → Ag0 + Cl-

зависимость потенциала электрода от активности хлорид-ионов описывается уравнением

Иногда электроды второго рода используют в качестве индикаторных, с их помощью измеряют концентрацию ионов, не участвующих непосредственно в процессе переноса электрона.

1.3. Прямая потенциометрия (ионометрия)

Прямая потенциометрия основана на непосредственном измерении потенциала индикаторного электрода и вычислении активности потенциалопределяющих ионов по уравнению Нернста.

Метод широко применяется для определения концентрации водородных ионов или рН растворов. Создание надежно работающих ионоселективных электродов значительно расширило практические возможности прямого метода. Прямой потенциометрический метод часто стали называть ионометрическим методом анализа или ионометрией.

Это удобный, простой и экспрессный современный метод: продолжительность анализа определяется временем подготовки пробы, поскольку, непосредственно на измерение тратится не более 1–2 мин.

В методе ионометрии предварительно, пользуясь растворами с известной концентрацией, градуируют электрод, т. е. опытным путем определяют зависимость его потенциала от концентрации потенциал-определяющего иона. Затем измеряют потенциал раствора с неизвестной концентрацией определяемого иона и по градуировочному графику находят его содержание.

Ионоселективные электроды позволяют измерять концентрации ионов до 10‾6 М в растворе. При этом необходимый для определения объем раствора составляет всего 0.05–0.1 мл.

1.4. Потенциометрическое титрование

Потенциометрическое титрование основано на определении точки эквивалентности по изменению потенциала индикаторного электрода при проведении химической реакции между титрантом и определяемым веществом. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода, если хотя бы один из участников реакции титрования является участником электродного процесса.

Виды кривых титрования приведены на рис. 1.2.

Рис. 1.2. Кривые потенциометрического титрования.

а) интегральная кривая; б) дифференциальная кривая;

в) кривая титрования по второй производной; г) кривая Грана.

Кривые титрования могут быть построены в координатах: потенциал индикаторного электрода (Е) ‑ объем титранта (V) (рис. 1.2а.). Это так называемая интегральная кривая потенциометрического титрования. Точка перегиба на кривой отвечает точке эквивалентности. Ее находят графическим путем: нахождением середины отрезка между касательными двух ветвей кривой.

Для более точного нахождения точки эквивалентности часто строят дифференциальную кривую потенциометрического титрования в координатах ∆Е / ∆V V (рис. 1.2б). На точку эквивалентности указывает максимум полученной кривой, а отсчет по оси абсцисс, соответствующий этому максимуму, дает объем титранта, израсходованного на титрование до точки эквивалентности.

На рис. 1.2в представлена кривая потенциометрического титрования в координатах: вторая производная потенциала по объему титранта 2Е / 2V ‑ объем титранта, V. Для нахождения точки эквивалентности соединяют концы обеих ветвей кривой.

В методе Грана (рис. 1.2г) точка эквивалентности определяется по графику в координатах: V / E V. Перед точкой эквивалентности и после нее кривая Грана линейна. Точка эквивалентности находится как точка пересечения этих прямых. Достоинства и удобства метода Грана особенно заметны при анализе разбавленных растворов, позволяющих определить точку эквивалентности с достаточной точностью вследствие линейности графика, а также в тех случаях, когда кривая титрования выражена плохо.

В потенциометрическом титровании могут быть использованы любые известные типы химических реакций, протекающие быстро и количественно.

Кислотно-основное потенциометрическое титрование основано на протекании химической реакции нейтрализации. В качестве индикаторного применим любой электрод с водородной функцией: водородный, хингидронный, стеклянный. Чаще всего используется стеклянный электрод. Метод позволяет провести количественное определение компонентов в смеси кислот, если константы их диссоциации различаются не менее чем на три порядка (например, в смеси соляной и уксусной кислот); многоосновных кислот (оснований), так как удается достичь разделения конечных точек многоступенчатого титрования (на кривой титрования при этом наблюдается несколько скачков).

Широкие возможности анализа многокомпонентных смесей без разделения открывает применение неводных растворителей. Например, раздельное определение соляной и монохлоруксусной кислот невозможно в водном растворе из-за отсутствия двух скачков титрования, но его удается провести в ацетоне.

В окислительно-восстановительном потенциометрическом титровании наибольшее распространение нашел платиновый индикаторный электрод. Величина скачка определяется разностью формальных потенциалов полуреакций. Желательно, чтобы одна из полуреакций была обратимой. При титровании не рекомендуется измерять потенциал до добавления титранта и вблизи точки эквивалентности, т. к. приобретаемый электродом смешанный потенциал неустойчив, поэтому его трудно измерить.

Все большее значение приобретает проведение редокс-титрования в органических растворителях. Одним из таких методов является определение воды по методу Фишера.

Комплексонометрическое потенциометрическое титрование используется для определения катионов металлов при титровании их комплексоном (III) (ЭДТА) с применением в качестве индикаторного соответствующего металлического электрода: титрование солей меди с медным электродом, солей цинка ‑ с цинковым электродом и т. д., а также ртутного электрода. Также используют ионоселективные электроды, обратимые относительно определяемого компонента. В ряде случаев необходимо добавление в анализируемый раствор потенциометрических индикаторов – потенциалопределяющих ионов, вводимых в небольшом количестве и обеспечивающих отклик индикаторного электрода либо до, либо после достижения конечной точки титрования (так, при титровании железа (Ш) вводят железа(П) в небольшом количестве).

В осадительном потенциометрическом титровании индикаторными электродами служат металлические или мембранные электроды, чувствительные к определяемому иону или иону — осадителю.

Например, можно определять галогенид-ионы (Сl‾, Вr‾, I‾) на серебряном электроде титрованием нитратом серебра. До точки эквивалентности потенциал электрода зависит от активности галогенид-ионов и серебряный электрод является электродом II рода. За точкой эквивалентности при избытке ионов серебра потенциал электрода зависит от активности собственных ионов (электрод I рода). Величина скачка зависит от растворимости осадка. Можно провести дифференцированное титрование смеси хлорид-, бромид — и иодид-ионов.

По методу осаждения могут быть также определены катионы серебра, ртути, цинка, свинца и т. д.

Существует несколько вариантов потенциометрического титрования в зависимости от инструментальных особенностей. С применением неполяризованных электродов можно провести титрование а) с одним индикаторным электродом и одним электродом сравнения; б) с двумя различными индикаторными электродами. Варианты титрования с применением поляризованных электродов (титрование под током): а)с одним индикаторным электродом и одним электродом сравнения; б) с двумя одинаковыми электродами сравнения.

Метод потенциометрического титрования имеет ряд преимуществ перед прямой потенциометрией и титрованием с визуальными индикаторами: отсутствие искажения результатов за счет диффузионного потенциала; нет необходимости знать коэффициент активности определяемого иона; исключение субъективных ошибок за счет инструментального фиксирования конечной точки; возможность анализа мутных и окрашенных растворов; сравнительно легкая автоматизация; возможность дифференцированного титрования компонентов смеси, в том числе с использованием неводных растворителей. Результаты определений методом потенциометрического титрования более точны, чем при использовании прямой потенциометрии, так как вблизи точки эквивалентности небольшому изменению концентрации соответствует большое изменение потенциала индикаторного электрода.

К недостаткам потенциометрического титрования можно отнести не всегда быстрое установление потенциала после добавления титранта.

Вольтамперометрический метод анализа основан на изучении поляризационных или вольтамперных кривых (вольтамперограмм) – зависимостей силы тока от приложенного напряжения. Вольтамперограммы регистрируют в электролитической ячейке с помощью поляризуемого индикаторного электрода и неполяризуемого электрода сравнения, погруженных в анализируемый раствор. На легкополяризуемом микроэлектроде происходит электровосстановление или электроокисление вещества (деполяризатора).

В настоящее время существует несколько десятков разновидностей вольтамперометрии, способных обеспечить экспрессность, высокую чувствительность, избирательность при определении неорганических и органических веществ в самых разнообразных объектах.

В классическом полярографическом методе в качестве рабочего электрода используют ртутный капающий электрод (ртуть вытекает из тонкого капилляра), электродом сравнения служит насыщенный каломельный электрод или донная ртуть. Если в растворе присутствуют вещества, способные электрохимически восстанавливаться или окисляться (так называемые деполяризаторы), то при наложении на электрохимическую ячейку линейно-меняющегося потенциала регистрируется вольтамперная кривая в виде волны (рис. 1.3).

Рис.1.3. Классическая полярограмма:

1 – остаточный ток,

2 – диффузионный ток

При низких значениях потенциала (участок 1 на рис.1.3), величина которого не достаточна для того, чтобы на рабочем микроэлектроде проходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток. Остаточный ток обусловлен прежде всего током заряжения двойного электрического слоя, который образуют ионы раствора на катоде, когда потенциал электрода недостаточен для их разряда, и присутствием в растворе более электрохимически активных, чем определяемое вещество, примесей.

При увеличении потенциала электрохимически активное вещество – деполяризатор вступает в электрохимическую реакцию на электроде, например,

Cd2+ + 2 е + Hg Cd (Hg)

и в результате этого ток резко возрастает. Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок 2). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии деполяризатора в этих условиях контролирует скорость электрохимического процесса в целом, и ток перестает зависеть от наложенного напряжения. Такой ток называют предельным диффузионным.

Для того, чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление ячейки, измерения проводят в присутствии большого избытка сильного электролита, называемого фоновым или фоном. Являясь электрохимически индифферентным, он не принимает участия в электродной реакции, но его ионы экранируют электрод, уменьшая тем самым движущую силу миграции под действием электрического поля практически до нуля.

Полярограмма содержит ценную аналитическую информацию: качественной характеристикой деполяризатора является потенциал полуволны 1/2) – потенциал, при котором ток равен половине величины диффузионного тока. Потенциал полуволны Е1/2 не зависит от силы тока и концентрации восстанавливающегося иона, зависит от его природы. Определение Е1/2 составляет основу качественного полярографического анализа.

Предельный диффузионный ток (Id) линейно связан с концентрацией деполяризатора в объеме раствора, и эта зависимость является основой количественного полярографического анализа. Связь Id с концентрацией иона См выражается уравнением Ильковича:

где: п – заряд иона; D коэффициент диффузии, см2·сˉ1; т – скорость вытекания ртути, мг·сˉ1; t – время образования капли (период капания), с; CM – концентрация деполяризатора, ммоль/л; Id – ток, мкА.

Если в растворе находится несколько электрохимически активных соединений, на полярограмме будет не одна волна, а несколько ‑ по числу восстанавливающихся ионов (рис. 1.4.). Можно получить полярографический спектр ионов и затем по измеренному Е1/2 идентифицировать неизвестное вещество.

в растворе восстанавливающихся

веществ А, В и С

Для определения концентрации используют метод сравнения со стандартом, метод градуировочного графика и метод добавок.

2.3. Амперометрическое титрование

Полярографический метод можно применить для определения точки эквивалентности в титриметрических методах анализа, если хотя бы один из участников реакции или ее продукт электроактивны — окисляются или восстанавливаются на микроэлектроде. Это так называемый метод амперометрического титрования. Титрование проводят при заданном значении потенциала, соответствующем достижению предельного диффузионного тока. Связь между вольтамперными кривыми и кривой зависимости предельного тока от объема титранта представлена на рис. 1.5.

Рис. 1.5. Вольтамперограммы электроактивного вещества при концентрациях с1>c2>c3>c4 (а), кривая амперометрического титрования этого вещества при потенциале индикаторного электрода E1 (б)

В ходе амперометрического титрования регистрируют величину диффузионного тока в зависимости от объема добавленного титранта. Кривая амперометрического титрования в координатах: сила тока ‑ объем титранта (Id ‑ V) состоит из двух линейных участков, точку эквивалентности находят графически. В качестве индикаторных электродов в амперометрическом титровании обычно применяют платиновые, графитовые и другие твердые электроды, чаще всего вращающиеся.

Следует различать электрохимическую реакцию, протекающую на границе раздела фаз электрод-раствор, и химическую реакцию, протекающую в растворе между определяемым веществом и титрантом.

Вид кривой амперометрического титрования зависит от того, какой компонент химической реакции участвует в электродном процессе (является деполяризатором): определяемое вещество, титрант или продукт реакции. На рис. 1.6 представлены основные типы кривых амперометрического титрования, в таблице 1 приведены примеры титрования.

а) определяемое вещество электрохимически активно

До точки эквивалентности уменьшается концентрация определяемого вещества в растворе, диффузионный ток падает.

б) титрант электрохимически активен

Концентрация электрохимически активного титранта в растворе увеличивается после достижения точки эквивалентности; это приводит к возрастанию силы тока Id.

Рис.1.6. Виды кривых амперометрического титрования:

а) деполяризатор — определяемое вещество;

б) деполяризатор — титрант;

определяемое вещество и титрант;

в) определяемое вещество и титрант электрохимически активны

До точки эквивалентности диффузионный ток уменьшается с уменьшением концентрации определяемого вещества. После точки эквивалентности диффузионный ток возрастает с увеличением концентрации титранта в растворе.

г) продукт химической реакции электрохимически активен

В ходе химической реакции образуется продукт, концентрация которого возрастает до точки эквивалентности, после чего остается постоянной. Диффузионный ток возрастает до точки эквивалентности.

Таблица 1. Тип кривой в зависимости от условий амперометрического титрования

Участник химической реакции — деполяризатор

Определяемое вещество Ag+

2 Pb2+ + Сr2О7 2‾ + Н2О →

Сr2О72‾ + 14 Н+ + 6 е-→

Определяемое вещество Рb2+ и титрант Сr2О7 2‾

В методах амперометрического титрования используют реакции осаждения, комплексообразования и окисления ‑ восстановления. Многие анионы: Сl‾, Вr‾, I‾, SO42‾, МоO42‾ и др. титруются солью свинца, при этом регистрируется ток восстановления Рb2+ на ртутном капающем электроде.

В реакциях осаждения часто применяется осаждение органическими реагентами: 8-оксихинолином, купфероном, диметилглиоксимом и др., причем титрование можно проводить как по току восстановления катиона, так и по току органического реагента.

Широко используется в амперометрическом титровании реакция образования этилендиаминтетраацетатных комплексов с различными катионами: Bi3+, Fe3+, Fe2+, Ni2+, Pb2+, Zn2+, Cu2+, Co2+, Cd2+.

При амперометрическом титровании с использованием реакций окисления – восстановления в качестве титрантов используют К2Сr2О7; Ce(SO4)2; КBrO3 и I2 для определения восстановителей; FeSO4, Na2S2O3 – для определения окислителей.

2.3.1.Титрование с двумя индикаторными электродами

В анализируемый раствор погружают два одинаковых инертных электрода, например, платиновых, между которыми с помощью внешнего источника поддерживается небольшая разность потенциалов (10-50 мВ) и в ходе титрования отмечают силу тока. До начала титрования ток практически равен нулю, так как в отсутствие окислительно-восстановительной пары при столь малой разности потенциалов электродные процессы не происходят. После введения титранта в растворе появляются две окислительно-восстановительные пары. Чем больше обратимость редокс-системы, тем меньшее напряжение требуется налагать на электроды. Возникновение тока в ячейке связано с протеканием электрохимических процессов на обоих электродах. Вид кривых титрования зависит от обратимости катодного и анодного процессов. Для полностью обратимой пары определяемого вещества (например, Fe3+/Fe2+), окисленная форма которого восстанавливается на катоде:

а восстановленная форма окисляется на аноде:

максимум тока будет наблюдаться при равенстве концентраций окисленной и восстановленной форм, когда раствор оттитрован на 50%. Поскольку индикаторные электроды одинаковы, одинаков и вклад катодного и анодного процессов в величину тока – кривая титрования симметрична, до начала титрования и в точке эквивалентности ток равен нулю. Если окислительно-восстановительная пара титранта необратима, ток после точки эквивалентности остается равным нулю (рис. 1.7 б), если пара титранта обратима, то после точки эквивалентности ток возрастает за счет участия в электродном процессе пары титранта (рис.1.7. в).

Примером реакции, в которой обратимая система титруется необрати мой, является перманганатометрическое определение соли Мора:

Рис.1.7. Кривые амперометрического титрования с двумя

а – титрование необратимой редокс-системы электрохимически обратимым титрантом;

б – титрование обратимой редокс-системы электрохимически необратимым титрантом;

в – титрование обратимой редокс-системы электрохимически обратимым титрантом

5Fe2+ +MnO4 — + 8H+ → 5Fe3+ + Mn2+ +4H2O

В реакции титрования железа (П) солью церия (1V):

Fe2+ + Ce4+ → Fe3+ + Ce3+

обе окислительно-восстановительные пары обратимы.

В методе биамперометрического титрования часто отпадает необходимость в построении кривой титрования, т. к. точка эквивалентности может быть определена по резкому прекращению или появлению тока.

Достоинством метода амперометрического титрования являются его экспрессность и простота, этим методом можно определять практически все элементы периодической системы и большое число органических соединений, причем определяемое вещество может не проявлять электрохимической активности. Основным достоинством метода является возможность анализа многокомпонентной смеси без предварительного разделения, достаточно высокая точность и чувствительность. Воспроизводимость результатов лучше, чем в полярографическом методе, поскольку регистрируют изменение тока в ходе титрования, и отпадает необходимость удалять из раствора кислород.

Кулонометрические методы основаны на измерении количества электричества, затраченного на электропревращение определяемого вещества (прямая кулонометрия) или на получение промежуточного реагента, который количественно реагирует с определяемым веществом (косвенная кулонометрия).

В основе кулонометрических методов анализа лежат законы электролиза Фарадея:

1. Количество (масса) вещества, выделившегося при электролизе, пропорциональна количеству электричества, прошедшего через раствор.

2. При прохождении через раствор одного и того же количества электричества, на электродах выделяется одно и то же количество эквивалента вещества.

где m масса вещества, выделившегося при электролизе, г; Q количество электричества, Кл; Мэ ‑ молярная масса эквивалента, г/моль-экв; F ‑ число Фарадея: F = 96500 Кл/моль-экв; I ‑ сила тока, А; t ‑ время электролиза, с.

Обязательным является условие, что электропревращение вещества на электроде происходит со 100%-ной эффективностью, т. е. со 100%-ным выходом по току, что возможно только в отсутствие побочных процессов (разложение воды, окисление или восстановление примесей, участие материала электрода в электрохимической реакции и др.)

Электролиз в кулонометрической ячейке можно проводить либо при постоянной силе тока (гальваностатическая кулонометрия), либо при постоянном потенциале (потенциостатическая кулонометрия).

3.2. Прямая кулонометрия

Метод прямой кулонометрии пригоден для определения только электроактивных веществ, поскольку, в его основе лежит непосредственное электропревращение вещества на электроде. Прямые кулонометрические измерения можно проводить, поддерживая постоянной либо силу тока (необходимо иметь гальваностат), либо потенциал рабочего электрода (необходимо иметь потенциостат).

Если электролиз проводят при постоянной силе тока (гальваностатическая кулонометрия), то количество электричества (Q) за время электролиза tЭ, при постоянном токе I равно:

Погрешность измерения Q зависит от точности измерения времени, поскольку современные приборы позволяют очень точно измерять даже небольшие токи. Прямая кулонометрия при постоянной силе тока является более простым, но менее селективным способом, поскольку в определенный момент времени может пойти реакция с участием мешающих веществ, фонового электролита или растворителя, и выход по току начинает уменьшаться по экспоненциальному закону.

Чаще применяют прямую кулонометрию при постоянном потенциале рабочего электрода. Потенциал электрода выбирают в области предельного тока; в этом случае ток, протекающий через ячейку, будет уменьшаться по экспоненциальному закону в соответствии с уменьшением концентрации электроактивного вещества (рис. 1.8.).

Можно самописцем записать изменение силы тока как функцию времени и найти количество электричества, измерив площадь под кривой планиметром (графическое интегрирование), однако, этот простой способ не очень точен и не годится для количественного анализа.

Рис.1.8. Определение количества электричества в методе прямой кулонометрии

Можно использовать химические интеграторы (кулонометры). Кулонометр – это электролитическая ячейка, в которой при замыкании цепи со 100%-ным выходом по току протекает электрохимическая реакция известной стехиометрии. Кулонометр включают последовательно с кулонометрической ячейкой, поэтому за время электролиза через обе ячейки протекает одинаковое количество электричества. По окончании электролиза по массе выделенного в кулонометре вещества рассчитывают эквивалентное ему количество электричества:

Однако в аналитической практике этот способ измерения Q применяют редко. Чаще измеряют ток, а не количество электричества. Величина тока в любой момент времени определяется формулой:

где It и I0 – сила тока в момент времени t и в начальный момент электролиза соответственно; k=0.43SD/ – коэффициент, зависящий от природы электроактивного вещества и от условий электролиза (S – площадь поверхности электрода, D– коэффициент диффузии вещества, V – объем раствора, δ – толщина диффузионного слоя).

Электролиз ведут до достижения остаточного тока It, величина которого определяется требуемой точностью. Так, если допустима погрешность порядка 0.1%, то электролиз можно считать завершенным при It

Прямая кулонометрия – высокочувствительный и точный метод анализа, легко поддающийся автоматизации. Общая погрешность метода может составлять 0.5%. При проведении электролиза в течение 103 с при силе тока 1 мкА принципиально возможно определить до 10‾9 г вещества.

3.3. Кулонометрическое титрование

Кулонометрическое титрование обычно проводят, поддерживая постоянной силу тока. Этот метод применяется для определения и электроактивных и электронеактивных веществ (см. табл. 2). В процессе титрования определяемое вещество реагирует с титрантом, образующимся в результате электрохимической реакции на электроде. Такой титрант называют электрогенерированным кулонометрическим титрантом, а электрод, на котором его получают – генераторным. Вторым электродом схемы генерации является так называемый вспомогательный электрод. Его обычно изолируют от анализируемого раствора, помещая в трубку с дном из пористого стекла, так как продукт реакции на вспомогательном электроде нередко мешает кулонометрическому определению. Индикаторными электродами могут быть два платиновых или золотых электрода, если для индикации применяется амперометрический метод, или платиновый и каломельный или хлоридсеребряный, если используется потенциометрическая индикация.

Электрогенерированный титрант можно получать из воды (ОН‾ при восстановлении ее на катоде или Н+ при окислении на аноде), растворов солей, кислот, вспомогательных реагентов (например, при окислении KI можно получить I2), твердых электроактивных рабочих электродов.

Электрогенерированный титрант можно получать непосредственно в ячейке для кулонометрического титрования (внутренняя генерация) или в отдельном устройстве (внешняя генерация), а затем вводить его в кулонометрическую ячейку. Для обеспечения 100%-ной эффективности тока необходимо ввести избыток вспомогательного реагента (это реализуется при генерации титранта из воды или материала электрода). В этом случае протекание конкурирующих реакций на электроде исключается, и по количеству электричества, затраченного на генерацию титранта, можно будет правильно рассчитать содержание определяемого вещества. Примеры электрогенерированных кулонометрических титрантов приведены в табл. 2.

В качестве химической реакции между кулонометрическим титрантом и определяемым веществом может быть использована любая химическая реакция, применяемая в титриметрии – реакции кислотно-основного взаимодействия, окисления-восстановления, осаждения, комплексообразования.

Для определения конца кулонометрического титрования пригодны практически все способы установления конечной точки в титриметрии:

использование визуальных индикаторов (крахмала, фенолфталеина) и инструментальных методов. Наибольшее распространение получили потенциометрический и амперометрический методы с двумя индикаторными электродами.

К числу достоинств кулонометрического титрования следует отнести то, что нет необходимости в приготовлении, стандартизации и хранении титранта, т. к. он образуется в процессе титрования и сразу же расходуется. При

Таблица 2. Электрогенерированные кулонометрические титранты


источники:

http://studyport.ru/referaty/estestvennye-nauki/3116-stekljannye-elektrody

http://pandia.ru/text/78/242/13.php