Уравнение никольского при ионной адсорбции

Уравнение Никольского

При ионообменной адсорбции происходит стехиометрический обратимый обмен ионов между объемом раствора электролитов и адсорбентом.

Процессы ионного обмена на твердой поверхности характеризуются уравнением Б.П.Никольского:

(14)

где и — количество ионов, поглощенных поверхностью сорбента (кмоль/кг), и — равновесные концентрации ионов в растворе (кмоль/ ), К – константа обмена, зависящая от способности ионов к адсорбции на данном сорбенте.

Графически уравнение Б.П.Никольского изображается прямой, тангенс угла наклона которой и представляют величину константы К.

Примеры решения задач:

1. Рассчитать удельную поверхность адсорбента по изотерме адсорбции бензола на его поверхности. Площадь, занимаемая молекулой бензола, S0=49·10 -20 м 2 .

p P/PS0.0240.080.140.200.270.350.46
a·10 3 , моль/кг14,934,847,256,866,379.3101.0

Решение. Проверяют применимость к экспериментальным данным теории БЭТ. С этой целью рассчитывают абсциссу и ординату уравнения изотермы адсорбции БЭТ в линейной форме, т.е.

и

Результаты вычислений сводят в таблицу 1 и строят график зависимости y=f(x)

p/psy, кг/мольp/psy, кг/моль
0,0241,6500,275,466
0,082,4990,356,790
0,143,4490,468,343

Рис.1 изотерма адсорбции в координатах линейной формы уравнения БЭТ.

Для определения адсорбционной емкости монослоя аm по графику зависимости у=f(x) находят константы уравнения прямой линии: отрезок, отсекаемый на оси ординат при p/ps=0, b0=1.24 кг/моль, и угловой коэффициент прямой b1=15.8 кг/моль. Для сравнения вычисляют b0 и b1

методом наименьших квадратов. Данные для расчёта b0 и b1 приведены в таблице 2.

nxy, кг/мольxy, кг/мольx 2
0,0241,6500,03965,76·10 -4
0,0802,4990,20006,4·10 -3
0,1403,4990,48301,96·10 -2
0,2004,4000,88004,00·10 -2
0,2705,4661,45507,08·10 -2
0,3506,7902,37650,123
0,4608,4343,87780,212

k=13,65 и am=0,0489 моль/кг.

По величине аm рассчитывают удельную поверхность адсорбента:

2. Вычислить предельный адсорбционный объём активированного угля БАУ по изотерме адсорбции бензола (таблица 3). Молярный объём бензола vm=89·10 -6 м 3 /моль.

p/psa, моль/кгp/psa, моль/кгp/psa, моль/кг
1,33·10 -60,501,63·10 -22,250,3272,86
2,13·10 -50,853,77·10 -22,390,4603,00
1,21·10 -41,189,47·10 -22,560,6573,19
5,60·10 -41,550,2012,740,8474,47

Решение. Проверяют применимость уравнения (II.15) к экспериментальным данным. С этой целью вычисляют lg a и (таблица 4) и строят график зависимости (Рис. II.2)

lg a lg a lg a
34,52-0,30103,190,35220,2300,4564
21,82-0,07062,030,37840,1130,4771
15,340,07191,050,40820,0330,5038
10,580,19030,480,43780,0050,6503

Рис.2 Изотерма адсорбции в координатах линейной формы уравнения М.М.Дубинина.

Как видно из рис.2, экспериментальные точки с хорошим приближением укладываются на прямую линию и, следовательно, уравнение (15) применимо к адсорбции бензола на активированном угле БАУ.

По отрезку, отсекаемому па оси lg a при =0, находят =0,435 и

3. По экспериментальным данным сорбции паров воды на активированном угле при Т = 293 К построить кривую капиллярной конденсации. Показать наличие гистерезиса и, используя ветвь десорбции, построить интегральную и дифференциальную кривые распределения пор по радиусам.

аадс ·10 3 ,моль/кг. 3,75 5,3 6;2 8,75 10,4 12, 5 13 ,4

адес·10 3 , моль/кг . . .. 3,75 7,0 7,9 10,0 11,5 13,0 13,4

Vm=18·10 -3 м3/моль, σ= 72,5-10 -3 Дж/м 2 .’

Решение. Строят изотерму капиллярной конденсации в соответствии с условием задачи. Выбирают ряд точек на ветви десорбции (не менее шести—восьми), соответствующих определенным значениям p/pS, и рассчиты­вают объем пор, заполненных конденсатом, по уравнению V=aVm. Затем для этих же значений по уравнению

рассчитывают максимальный радиус пор, заполненных конденсатом при соответствующих давлениях p/ps. Полученные данные записывают в табл. 5 и строят структурную кривую адсорбента в координатах V=f(r). Из кривой находят ряд значений ΔV/Δr (табл.6) и строят дифференциальную кривую распределения объёма пор по радиусам в координатах ΔV/Δr=f(r)

Таблица.5 Данные для построения интегральной кривой распределения объёма пор по радиусам.

№ точкиP/PSaдес·10 3 ,моль/кгV·10 6 ,м 3 /кгr·10 10 ,м
0,05 0,1 0,2 0,4 0,6 0,8 0,9 0,980,5 3,7 7,0 7,9 9,0 10,0 10,9 11,50,9 66,6 126,0 142,0 162,0 180,0 196,0 207,02,2 4,6 6,6 8,5 11,6 15,5 20,2 26,3

Таблица.6 Данные для построения дифференциальной кривой распределения объёма по радиусам.

ΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,мΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,мΔV/Δr·10 — 4 ,м 2 /кгΔr·10 10 ,м
1,5 0,5

Рис.3 Интегральная(1) и дифференциальная(2) кривые распределения.

Задачи

1. Ниже приведены экспериментальные данные по адсорбции азота на TiO2 (рутиле) при 75 К:

P·10 2 Па……….60,94 116,41 169,84 218,65 275,25

А, моль/кг……. 0,367 0,417 0,467 0,512 0,567

Постройте график соответствующий линейному уравнению БЭТ. Найдите константы и k. Рассчитайте удельную поверхность адсорбента. Давление насыщенного пара азота при указанной температуре Рs=78300 Па, площадь,

занимаемая одной молекулой азота S0=0,16 нм 2 .

2.Окись углерода адсорбируется на слюде; данные при 90 К представлены ниже. Определите, какой изотерме – Лэнгмюра или Фрейндлиха – лучше соответствуют эти данные? Каково значение К для адсорбционного равновесия? Взяв общую поверхность равной 6200см 2 , рассчитайте площадь, занимаемую каждой адсорбированной молекулой.

Vа, см 3 ……………..0,130 0,150 0,162 0,166 0,175 0,180

Р, мм. рт. cт.………. 100 200 300 400 500 600.

3.При измерении адсорбции газообразного азота на активном угле при 194.4К были получены следующие данные:

р·10 -3 , Па……………….1,86 6,12 17,96 33,65 68,89

А·10 3 , м 3 /кг…………..…5,06 14,27 23,61 32,56 40,83

Значения А даны для азота при нормальных условиях.

Рассчитайте, постоянные в уравнение Лэнгмюра и удельную поверхность активированного угля, принимая плотность газообразного азота равной

1,25 кг/м 3 , а площадь занимаемую одной молекулой азота на поверхности адсорбента, равной 0,16 нм 2 .

4.При измерении адсорбции азота на активированном угле при 273 К были получены следующие данные:

А,см 3 /г…………..……0,987 3,04 5,08 7,04 10,31

Р, мм. рт. ст…….……3,93 12,98 22,94 34,01 56,23

Построить график в координатах, в которых происходит спрямление уравнения изотермы Лэнгмюра, и определить константы этого уравнения.

5.Определите константы эмпирического уравнения Фрейндлиха, используя следующие данные об адсорбции диоксида углерода на активном угле при 293 К:

Р·10 -3 , Па…………1,00 4,48 10,0 14,4 25,0 45,2

А·10 2 , кг/кг……….3,23 6,67 9,62 11,72 14,5 17,7.

6.Используя уравнение БЭТ, построить изотерму адсорбции бензола по нижеуказанным данным и рассчитайте удельную поверхность адсорбента по изотерме адсорбции бензола (варианты 1-4):

1. P/Ps.………..0,04 0,08 0,16 0,22 0,27 0,36 0,46

А, моль/кг……. 0,348 0,483 0,624 0,724 0,805 0,928 0,13

2. Р/Рs………. 0,05 0,12 0,19 0,26 0,34 0,44 0,50

А, моль/кг ……. 0,31 0,593 0,795 0,99 1,21 1,525 1,77

3. Р/Рs……….…0,03 0,07 0,12 0,17 0,24 0,31 0,38

А, моль/кг……. 0,196 0,301 0,373 0,423 0,488 0,52 0,625

4. Р/Рs…………. 0,02 0,05 0,11 0,19 0,25 0,3 0,36

А, моль/кг……. 0,104 0,196 0,298 0,387 0,443 0,488 0,55

Площадь, занимаемую молекулой бензола, примите равной 0,49 нм 2 .

7.Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по данным об адсорбции азота:

А•10 3 , м 3 /кг…………..0,71 0,31 0,93 1,09

Площадь занимаемая молекулой азота в плотном монослое, равна 0,16 нм 2 ,

Плотность азота 1,25 кг/м 3 .

8.При обработке данных по адсорбции азота на графитированной саже при 77 К с помощью графика, соответствующего линейному уравнению БЭТ,

найдено, что тангенс угла наклона прямой составляет 1,5•10 3 , а отрезок, отсекаемый на оси ординат, равен 5 единицам (адсорбция выражена в м 3 азота на 1 кг адсорбента при нормальных условиях). Рассчитайте удельную поверхность адсорбента, предполагая, что площадь, занимаемая одной молекулой азота, равна 0,16 нм 2 .

9.Ниже приведены результаты измерения адсорбции газообразного криптона (при 77,5К) на катализаторе:

А·10 3 , м 3 /кг…………1,27 1,5 1,76 1,9 1,98

Р, Па……………..…13,22 23,99 49,13 75,70 91,22.

Значения А для криптона даны при нормальных условиях. Определите константы уравнения БЭТ и удельную поверхность катализатора, принимая, что один атом криптона занимает площадь 0,195нм 2 , Рs=342,6 Па, плотность криптона равна 3,74 кг/м 3

10.используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по изотерме адсорбции азота:

А, моль/кг……..2,16 2,39 2,86 3,02 3,22 3,33

Площадь занимаемая одной молекулой азота в адсорбционном слое 0,16 нм 2 .

11.По изотерме адсорбции азота определить удельную поверхность адсорбента

(Т=77 К, S0=16,2·10 -20 м 2 ). (Варианты 1-5).

1. Р/Рs………. 0,04 0,09 0,16 0,20 0,30

А, моль/кг… .2,20 2,62 2,94 3,11 3,58

2. Р/Рs…………0,029 0,05 0,11 0,14 0,20

А, моль/кг………..2,16 2,39 2,86 3,02 3,33

3. Р/Рs………….0,02 0,04 0,08 0,14 0,16 0,18

А, моль/кг………..1,86 2,31 2,72 3,07 3,12 3,23

Для следующих двух вариантов объем адсорбированного газа приведен к нормальным условиям:

4. Р/Рs…………….…0,05 0,10 0,15 0,20 0,25 0,30

А·10 2 м 3 /кг……………..0,70 1,10 1,17 1,32 1,45 1,55

5. Р/Рs……………….0,029 0,05 0,11 0,14 0,18 0,20

А·10 2 м 3 /кг……..……..0,48 0,54 0,64 0,68 0,72 0,75

12.По изотерме адсорбции бензола определить удельную поверхность

адсорбента. Т=293 К, S0=49•10 -20 м 2 . Объем адсорбированного газа приведен к нормальным условиям (варианты 1-4):

1. Р/Рs…………………….0,05 0,10 0,15 0,20 0,25 0,30

А·10 2 , м 3 /кг………………..0,86 1,20 1,40 1,60 1,80 1,90

2. Р/Рs…………………….0,10 0,15 0,20 0,25 0,30 0,35

А·10 2 , м 3 /кг……….………..1,15 1,37 1,55 1,71 1,86 1,99

3. Р/Рs…………………….0,10 0,15 0,20 0,25 0,30 0,35

А·10 2 , м 3 /кг………………..0,89 1,09 1,27 1,45 1,60 1,78

4. Р/Рs…………………….0,08 0,16 0,25 0,35 0,45 0,52

А·10 2 , м 3 /кг………..… ……1,03 1,37 1,70 1,99 2,44 2,82

13.По изотерме адсорбции бензола определить удельную поверхность

адсорбента. Т=293 К, S0=49·10 -20 м 2 (варианты 1-3).

1. Р/Рs……………..0,05 0,10 0,15 0,20 0,30 0,40

А, моль/кг…. ………0,36 0,51 0,60 0,68 0,82 0,98

2. Р/Рs…………. ….0,06 0,12 0,20 0,30 0,40 0,50

А, моль/кг…. ………..0,08 0,16 0,25 0,35 0,45 0,52

3. Р/Рs…………. ….0,46 0,61 0,76 0,89 1,09 1,26

14.Построить изотерму адсорбции нитролигнина на глине и определить константы уравнения Фрейндлиха по следующим экспериментальным данным:

Концентрация водного раствора нитролигнина

Г·10 3 , кг/кг……………………5,0 12,0 21,0 26,0 35,0 38,0.

15.Пользуясь экспериментальными данными ионного обмена ионов кальция (Г1с1) и натрия (Г2с2) на синтетическом катионите, определить графически константу уравнения Никольского К:

в растворе…………….0,2 0,3 0,4 0,5 0,6 0,8

на сорбенте…………..0,75 1,0 1,5 1,8 2,4 3,1.

16.Пользуясь константами уравнения Фрейндлиха k=4,17·10 -3 , 1/n=0,4, рассчитать и построить изотерму адсорбции углекислого газа на угле для следующих интервалов давления: 100·10 2 , 200·10 2 , 400·10 2 , 500·10 2 Н/м 2 .

17. Пользуясь константами уравнения Фрейндлиха k=3,2·10 -3 , 1/n=0,6 построить кривую адсорбции углекислого газа на угле в интервале давлений от 5·10 2 до 25·10 2 Н/м 2 .

18. По данным сорбции углекислого газа на угле построить изотерму адсорбции и определить константы изотермы адсорбции Фрейндлиха:

Р·10 -2 , Н/м 2 ……………..5,0 10,0 30,0 50,0 75,0 100,0

Г·10 3 , кг/кг……………..30, 5,5 16,0 23,0 31,0 35,0.

19. При изучении реакций обмена Mg-ионов из чернозема с ионами Ca из внесенных минеральных удобрений получены следующие результаты:

Концентрация ионов в растворе Количество сорбированных катионов

С·10 3 , кмоль/м 3 Г·10 5 ,кмоль/кг

2,41 4,75 8,12 42,88

2,25 5,00 7,70 43,30

2,00 5,10 6,90 44,10

1,84 5,50 6,10 44,90

1,53 5,87 4,54 46,46

1,37 5,99 4,12 46,88

Графическим методом определить константу уравнения Никольского.

20.Оределить константу уравнения Никольского К, используя экспериментальные данные реакций обмена ионов Ca из почвы на ионы Na из раствора натриевой соли.

Концентрация ионов в растворе Na…3,26 6,60 13,80 21,25 38,41 65,19

С·10 3 , кмоль/м 3 Ca.…37,84 36,72 34,62 31,87 26,16 17,10

Количество сорбированных Na….0,28 0,60 1,20 1,89 3,18 7,62

ионов Г·10 5 , кмоль/кг Ca…39,72 39,56 39,40 38,93 38,68 37,40

21.Пользуясь экспериментальными данными реакций обмена ионов ионов Na из раствора натриевой соли на ионы Mg из почвы, определить графически константу уравнения Никольского:

Концентрация ионов в растворе Количество сорбированных ионов

С·10 3 ,кмоль/м 3 на почве Г.10 5 , кмоль/кг

13,82 41,92 1,16 25,40

21,25 38,30 1,89 26,13

38,19 31,90 3,62 27,20

65,0 21,14 8,01 29,32

79,25 14,73 11,66 32,84

22. Используя экспериментальные данные адсорбции анилина из его водного раствора на угле, определить графически константы уравнения Лэнгмюра и построить изотерму адсорбции для следующих с1:

C1·10 4 , кмоль/м 3 ……………………3 5 10 15 20

анилина с·10 4 , кмоль/ м …………1,0 4,0 7,5 12,5 17,5

А·10 9 ,кмоль/м 2 …………….……0,3 0,58 0,70 0,87 0,92

23.По экспериментальным данным построить кривую адсорбции углекислого газа на цеолите при 293º и с помощью графического метода определить константы уравнения Лэнгмюра:

Р·10 -2 , н/м 2 ……………….1,0 5,0 10,0 30,0 75,0 100,0 200,0

А·10 3 , кг/кг………………35,0 86,0 112,0 152,0 174,0 178,0 188,0

24.Используя уравнение Лэнгмюра, вычислить величину адсорбции азота на цеолите при давлении р=2,8·10 2 , если А=38,9·10 -3 кг/кг, а k=0,156·10 -2 .

25. Найти площадь, приходящуюся на одну молекулу в насыщенном адсорбционном слое анилина на поверхности его водного раствора, если предельная адсорбция А=6,0·10 -9 кмоль/м

26.По экспериментальны данным адсорбции углекислого газа на активированном угле, найти константы уравнения Лэнгмюра, пользуясь которыми рассчитать и построить изотерму адсорбции:

P·10 -2 , Н/м2……………..9,9 49,7 99,8 200,0 297,0 398,5

Г·10 3 , кг/кг……………..32,0 70,0 91,0 102,0 107,3 108,0.

27.По константам уравнения Лэнгмюра А=182·10 -3 и k=0,1·10 -2 рассчитать и построить изотерму адсорбции углекислого газа на активированном угле в пределах следующих равновесных давлений газа: 10·10 2 – 400·10 2 Н/м.

28.Построить кривую адсорбции углекислого газа на активированном угле при 231 º и определить константы эмпирического уравнения Фрейндлиха, пользуясь следующими экспериментальными данными:

Р·10 -2 , Н/м 2 ………………10,0 44,8 100,0 144,0 250,0 452,0

А·10 3 , кг/кг……………….32,3 66,7 96,2 117,2 145,0 177,0.

29. Используя константы эмпирического уравнения Фрейндлиха k=1,6·10 -3 и 1/n=0,48, построить кривую адсорбции углекислого газа на активированном угле при 271 º в интервале давлений от 2·10 2 до 30·10 2 Н/м 2 .

30. Определить постоянные эмпирического уравнения Фрейндлиха, используя следующие данные для адсорбции при 231К углекислого газа на угле из коксовой скорлупы:

Р, Па·10 -3 ……………….1,000 4,480 10,000 14,40 25,0 45,2

А, кг/кг·10 2 ………………3,23 6,67 9,62 11,72 14,5 17,7.

31. Вычислите площадь поверхности катализатора, если для образования монослоя на нем должно адсорбироваться 103 см 3 /г азота (объем приведен к 760 мм рт.ст. и 0ºС). Адсорбция измеряется при температуре 195ºС. Эффективная площадь, занимаемая молекулой азота при этой температуре, равна 16,2 А 2 .

32.Площадь поверхности 1 г активированного угля равна 1000 м 2 . Какое количество аммиака может адсорбироваться на поверхности 45 г угля при 45ºС и 1 атм, если принять в качестве предельного случая полное покрытие поверхности? Диаметр молекулы аммиака равен 3·10 -10 м. Принимается, что молекулы касаются друг друга так, что центры четырех соседних сфер расположены в углах квадрата.

33. Ниже представлены данные по хемосорбции водорода на порошке меди при 25ºС. Подтвердите, что они подчиняются изотерме Ленгмюра. Затем найдите значение К для адсорбционного равновесия и адсорбционный объем, соответствующий полному покрытию.

Р, мм рт ст…………………..0,19 0,97 1,90 4,05 7,5 11,95

Vа, см 3 ……………………….0,042 0,163 0,221 0,321 0,411 0,471.

34. Определите, какая изотерма – Лэнгмюра или Фрейндлиха – лучше соответствует данным для адсорбции метана на 10 г сажи при 0ºС, приведенным ниже:

5.3.4. Термодинамика ионного обмена

Ионный обмен — обратимый процесс, приводящий, как правило, к установлению термодинамического равновесия. Это обстоятельство позволяет легко регенерировать иониты после их использования. Катиониты регенерируют 0,2-0,5 н. раствором кислоты, аниониты — раствором щелочи, слабоосновные аниониты – раствором соды. При средней степени сшитости ионитов положение ионообменного равновесия определяется в значительной степени природой обменивающихся ионов.

Положение равновесия обмена, например, противоионов типа (1) на ионы типа (2) определяется термодинамической постоянной K:

, (1.5.51)

где — активности обменивающихся ионов в ионообменнике и в растворе; z1и z2— заряды ионов. Из этого уравнения следует, что склонность ионита к ионному обмену повышается с ростом валентности и растет при переходе от одновалентных ионов кдвух- и трехвалентным ионам. При равных зарядах обменивающихся ионов сродство ионитов к катионам возрастает в соответствии с известными рядами Гофмейстера, например, в рядах Li + + + + + и Mg 2+ 2+ 2+ 2 + , к органическим катионам (или анионам) — с растущим числом и размерами органических радикалов в ионе, например, в ряду

.

В приведенных рядах неорганических катионов падает их склонность к гидратации, а в случае органических ионов растет интенсивность дисперсионных взаимодействий с матрицей. Тепловой эффект ионного обмена, не осложненного побочными взаимодействиями, не превышает 4-8 кДж/моль. Поэтому постоянная ионообменного равновесия мало зависит от температуры.

В связи с тем, что активность ионов в ионообменнике ни определить, ни рассчитать по косвенным определениям невозможно, часто при выражении постоянной равновесия ионнного обмена активности ионов в ионообменнике заменяют их массой, тогда уравнение приводят к виду

. (1.5.52)

В этой форме уравнение известно как уравнение Никольского.

Если обмениваются ионы одного знака заряда, т.е. при z1 = z2, то

. (1.5.53)

Для разбавленных растворов электролитов, обменивающихся ионами с ионообменником можно активность заменить на концентрацию, тогда

. (1.5.54)

Уравнение (1.5.54) позволяет рассчитать постоянную равновесия ионообменной адсорбции, имеющую большое практическое применение, по результатам определения концентрации ионов в растворе до и после ионного обмена, но следует помнить, что найденная таким образом постоянная не будет строгой термодинамической характеристикой процесса.

Скорость установления равновесия обычно ограничивается диффузией обменивающихся ионов через границу раздела фаз «ионит — раствор» или, чаще, внутри гранул, волокон или мембран ионита.

Ионно-обменная адсорбция

Адсорбция в растворах-электролитах имеет огромное значение в окружающей нас природе. Именно адсорбция ионов почвой обуславливает её плодородие, а следовательно — и жизнь на Земле.

При адсорбции ионов часто наблюдают так называемую обменную адсорбцию. Она заключается в том, что твёрдый адсорбент поглощает из раствора-электролита катионы или анионы, выделяя одновременно в раствор эквивалентное количество других катионов или анионов.

Сорбенты, способные к обмену ионов, называют ионообменниками или ионитами. Иониты, обменивающиеся с раствором катионами, — катиониты,а обменивающиеся анионами — аниониты.

Амфотерные иониты способны обмениваться как катионами, так и анионами. К катионитам следует отнести алюмосиликаты (цеолиты, пермутиты), силикагель, целлюлозу и т.д.

Примером анионитов могут служить гидроксиды алюминия и железа. Амфотерные иониты способны обменивать и катионы, и анионы. Это синтетические материалы, имеющие состав типа Н + SO3 — — R или R – N + (CH3)3OH — , где R – органическая полимерная основа.

Иониты широко применяются в практической деятельности, особенно их значение возросло после 1935 г, когда был осуществлён промышленный синтез разнообразных искусственных ионообменников – ионообменных смол.

Ионообменные смолы – это высокомолекулярные нерастворимые в воде соединения, способные набухать, поглощая при этом значительное количество воды. При набухании происходит диссоциации их поверхностных полярных групп и в приповерхностном слое ионита образуется ДЭС.

Ионы ДЭС как раз и обмениваются на другие ионы, имеющие большую адсорбционную способность.

Процесс ионного обмена обратим, и его направление зависит от концентрации обменивающихся ионов. Б.П. Никольский и Е.Н. Гапон (**) для описания закономерностей ионного обмена (1939 г) предложили уравнение:

, (2.113)

где g1 и g2 – содержание обменивающихся ионов в адсорбенте, моль/г; а1 и а2 – активности обменивающихся ионов в растворе; z1 и z2 – заряд ионов; К – константа. При малых концентрациях растворов-электролитов вместо активностей можно использовать концентрации. В этом случае уравнение Никольского – Гапона для однозарядных ионов имеет вид:

(2.114)

Ионообменная адсорбция на синтетических ионитах часто применяется для деминерализации воды в теплосиловых установках. Довольно широкое распространение она нашла и в пищевых технологиях. Так, в молочной промышленности ионитная обработка молока применяется для получения детского питания, высококачественного легкорастворимого сухого молока и хорошего сгущенного молока (без характерной при избытке кальция “песчаности” и “мутности”). Возможно применение ионитов и для удаления из молока радиоактивных элементов и ионов тяжелых металлов.

Анионитная обработка фруктовых соков позволяет удалять из них кислоты, имеющие неприятный вкус, например яблочную кислоту, и заменить их другими. В производстве лизина микробиологическим путем есть стадия извлечения катионной формы препарата из раствора. Она основана на ионообменной адсорбции:

Обменная адсорбция имеет большое значение для земледелия, так как от природы поглощённых почвой катионов зависит её плодородие. Например, почва способна поглощать и удерживать катионы К + и NH4 + , содержащиеся в удобрениях и необходимые для питания растений. Взамен этих катионов почва выделяет эквивалентные количества других катионов, например Са 2+ и Mg 2+ Анионы, как, например, С1 — , NO3 — , SO4 2- , почти не поглощаются почвой. От природы поглощенных ионов в значительной мере зависят физические и агротехнические свойства почвы.

Иониты широко применяют при получении в производственных условиях деминерализованной воды, т. е. воды, не содержащей растворенных солей (так устраняют жёсткость воды). Для умягчения воды её последовательно пропускают через катионитовый и анионитовый фильтры. Катионит содержит способный к обмену Н + (Н-форма катионита), анионит – ОН — (ОН — форма анионита).

Рассмотрим в качестве примера удаление NaCI из воды. Катионит, взаимодействуя с хлоридом натрия, обменивает ион натрия на ион водорода, который поступает в раствор:

RH (т) + NaCI (р) Þ RNa (т) + НС1 (р)

Далее воду обрабатывают анионитом в ОН — форме, при этом поглощаются хлорид — ионы:

R’OH (т) + НС1 (р) Þ R’Cl (т) + Н2О,

где RH и R’OH представляют собой иониты, способные к обмену катионов или анионов соответственно.

После использования иониты могут быть регенерированы обработкой раствором серной или соляной кислот (катионит) или растворами гидроксида натрия или гидрокарбоната натрия (анионит).

Большое значение имеют иониты в деле охраны окружающей среды. Так, например, в сточных водах многих производств содержатся ионы тяжелых металлов, которые вредны для живых организмов. Так как концентрация тяжелых металлов в сточных водах очень мала, применение обычных методов очистки (например, осаждения) неэффективно и дорого. Сточные воды пропускают через слой катионита, причем можно использовать катионит, способный обменивать не ионы водорода, а, например, ионы натрия. Ионы тяжелых металлов, обмениваясь на ионы натрия, поглощаются катионитом, из которого их можно извлечь и использовать далее в народном хозяйстве.

Дата добавления: 2016-07-27 ; просмотров: 2831 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://xumuk.ru/colloidchem/65.html

http://poznayka.org/s48335t1.html