Уравнение ньютона для вязкости трения

Внутреннее трение

Вы будете перенаправлены на Автор24

Явление внутреннего трения

Явление внутреннего трения (вязкости) связано с возникновением сил трения между двумя слоями газа или жидкости, перемещающимися параллельно друг относительно друга с различными скоростями. Причиной вязкости является перенос молекулами импульса из одного слоя газа в другой (поперек направления движения слоев) (рис.1).

В потоке газа молекулы участвуют в двух движениях одновременно: тепловом (хаотическом) со средней скоростью $\left\langle \overrightarrow\right\rangle $ и упорядоченном со скоростью потока $\overrightarrow$. Скорость теплового движения гораздо больше, чем скорость потока.

В результате теплового движения молекулы перелетают из одного слоя вещества в другой, переносят при этом свой импульс. В неподвижном газе средний импульс молекулы равен 0. Молекула в потоке газа обладает отличным от нуля импульсом. В результате обмена молекулами импульс упорядоченного движения быстрее движущегося слоя уменьшается, а другого наоборот. Слой вещества, который движется быстрее, тормозится, а медленный ускоряется. Уравнение Ньютона для вязкости в одномерном случае $(v=v(x))$:

$dF$- сила внутреннего трения, действующая на площадку dS поверхностного слоя, $\frac$- проекция градиента скорости движения слоев на направление оси Ox, в направлении перпендикулярном к поверхности слоя, $\eta $- коэффициент вязкости. Сила трения $F_<\tau >$, отнесенная к площади трущихся поверхностей равна потоку импульса упорядоченного движения частиц в перпендикулярном направлении к скорости. Используем основное уравнение для явлений переноса. В нашем случае $G=mv$, следовательно:

где $\eta =\frac<1><3>n_0\left\langle v\right\rangle \left\langle \lambda \right\rangle m=\frac<1><3>\rho \left\langle v\right\rangle \left\langle \lambda \right\rangle $ — динамическая вязкость, $\rho =n_0m$ — плотность газа. Знак $F_<\tau >$ учитывает, что сила трения, действующая на более быстрые слои, направлена против скорости. Динамическая вязкость не зависит от давления и растет, в основном, пропорционально $\sqrt$. Более точные теоретические расчеты приводят к замене множителя $\frac<1><3>$ на коэффициент, который зависит от характера взаимодействия молекул. Для молекул, сталкивающихся, как гладкие шары, он равен 0,499. Вообще этот коэффициент зависит о температуры.

Готовые работы на аналогичную тему

Кинематическая вязкость

Наряду с динамической вязкостью используют и кинематическую вязкость:

Согласно кинетической теории газов между коэффициентами переноса существует связь:

где $c_V$- удельная теплоемкость газа при изохорном процессе. На практике используется более точное соотношение коэффициентов переноса:

где $\alpha $- множитель, зависящий от числа степеней свободы молекулы газа. Так для одноатомной молекулы газа $\alpha =2,5$, двухатомного $\alpha =1,9$, трехатомного $\alpha =1,5-1,75.$

Задание: Определить коэффициент вязкости газа с молярной массой $\mu $ при температуре T. Эффективный диаметр молекулы газа принять равным d.

Запишем формулу для определения коэффициента вязкости:

\[\eta =\frac<1><3>\rho \left\langle v\right\rangle \left\langle \lambda \right\rangle \ \left(1.1\right).\]

Плотность газа определим из уравнения Менделеева — Клайперона:

\[pV=\frac<\mu >RT\to \rho =\frac=\frac\left(1.2\right)\] \[\left\langle v\right\rangle =\sqrt<\frac<8RT><\pi \mu >>\left(1.2\right)\] \[\left\langle \lambda \right\rangle =\frac<1><\sqrt<2>\pi d^2n>,\ p=nkT\to \left\langle \lambda \right\rangle =\frac<\sqrt<2>\pi d^2p>\left(1.3\right)\]

Подставим (1.2), (1.3) в (1.1), получим:

Ответ: Вязкости газа заданных параметров $\eta =\frac<1><<3\pi N>_Ad^2>\sqrt<4RT\mu >$.

Задание: Газ заполняет пространство между двумя длинными коаксиальными цилиндрами, радиусы которых R1 и R2, причем R1$

По определению момента сил $M_

$ вращающегося тела запишем:

\[M_

=F_r\ \left(2.1\right)\]

C другой стороны при длине цилиндра равной l по условию задачи:

\[M_

=N_1\cdot l\ (2.2),\ \]

Кроме того из условия задачи имеем:

\[F_

=\sigma \triangle S\ =\ \eta \cdot r\ \frac2\pi rl=2\eta \pi r^2l\frac\ \left(2.3\right)\]

\[M_

=2\eta \pi r^3l\frac=N_1\cdot l\to 2\eta \pi r^3\frac=N_1(2.4)\]

Разделим переменные в уравнении (2.4), получим:

Проинтегрируем обе части уравнения по соответствующим переменным:

Ответ: Коэффициент вязкости газа будет $\eta =\frac<4\pi w_c>\left(\frac<1><^2>-\frac<1><^2>\right).$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 17 12 2021

Вязкость (внутреннее трение). Закон Ньютона. Коэффициент вязкости

Вязкость (внутреннее трение) связано с возникновением сил трения между слоями газа (жидкости), перемешивающимися друг с другом с различными по модулю скоростями.

Со стороны слоя движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила и наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слои газа (жидкости). Силы трения которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев. С молекулярно-кинетической точки зрения причиной вязкости является упорядоченное движение слоев с различными скоростями u и хаотичного движения молекул υ.

Согласно закону Ньютона сила трения между двумя слоями газа или жидкости равна.

Эмпирическое уравнение вязкости, закон Ньютона:

где η – коэффициент вязкости; — величина показывающая, как быстро изменяется

скорость течения жидкости или газа в направлении z, перпендикулярном к направлению движения слоев (градиент скорости u), S – площадь лежащей на границе между слоями поверхности, по которой действует сила F.

Согласно 2-му закону Ньютона:

или, , тогда

Уравнение Ньютона для внутреннего трения можно представить в виде:

где Δрим – импульс, передаваемый от слоя к слою за секунду (Δt=1 с), т.е. поток импульса через поверхность S. Знак «минус» в формуле обусловлен тем, что импульс «течет» в направлении убывания скорости u. Поэтому знаки импульса и градиента скорости u противоположны.

В формуле Ньютона минус писать нельзя, потому что она определяет одинаковый модуль двух противоположно направленных сил, с которыми слои действуют друг на друга. Кроме того нужно брать модуль градиента скорости, так как производная может иметь любой знак, а модуль силы – положительная величина.

Рассмотрим происхождение силы внутреннего трения.

Рассмотрим два соприкасающихся слоя газа толщиной Δz. Слои движутся с различными скоростями u1 и u2. Каждая молекула газа участвует в двух движениях: хаотическом тепловом, средняя скорость которого равна , и упорядоченном движении со скоростью потока u. Скорость потока намного меньше, чем скорость теплового движения. В неподвижном газе средний импульс молекулы равен нулю. Молекула в потоке газа обладает средним импульсом mu. При рассмотрении внутреннего трениянас будет интересовать этот импульс.

Пусть в некоторый момент времени слои обладают импульсами рим1 и рим2. При отсутствии внешнего воздействия на слои, их импульсы не могут оставаться неизменными, так как вследствие теплового движения происходит непрерывный переход молекул из одного слоя в другой. Попав в другой слой, молекула претерпевает столкновения с молекулами этого слоя, в результате чего она отдает избыток своего импульса другим молекулам ( если она прилетела из слоя, движущегося быстрее), либо увеличивает свой импульс за счет других молекул (если она прилетела из слоя, движущегося медленнее). В итоге импульс слоя, движущегося быстрее, убывает, а слоя, движущегося медленнее, возрастает. Следовательно, слои ведут себя так, как если бы к слою, скорость которого больше, была приложена сила, тормозящая его движение, а к слою, скорость которого меньшая, — такая же по модулю сила, ускоряющая его движение. Таков механизм возникновения сил внутреннего трения.

Через поверхность S, лежащую на границе раздела слоев, переходит в единицу времени из одного слоя в другой количество молекул, определяемое выражением:

на среднюю скорость молекул в направлении, перпендикулярном к слоям, движение слоев со скоростью u не оказывает влияния). В результате возникает в направлении от более быстрого слоя к более медленному поток импульса через поверхность S, равный:

В реальном потоке газа скорость при переходе через воображаемую границу двух слоев изменяется не скачком, а непрерывно по закону u=u(z). Будем считать, что каждая молекула, пролетающая через поверхность S, несет с собой импульс mu, определяемый скоростью u в том месте, где произошло столкновение молекулы. Это столкновение происходит на различных расстояниях от S. В среднем последнее столкновение происходит на расстоянии, равном длине свободного пробега λ. Поэтому молекулам, летящим в направлении оси z, припишем значение скорости u1=u(z–λ), а молекулам, летящим в противоположном направлении, – значение скорости u2=u(z+λ). Подстановка этих значений в формулу для потока импульса через поверхность S в направлении оси z дает выражение:

Произведение nm равно плотности газа ρ. Поэтому полученное уравнение можно записать в виде:

Сравнение полученного уравнения с эмпирической формулой Ньютона дает для вязкости выражение:

Размерность вязкости [η] = 1 (кг/(м∙с)) = 1 (Па∙с).

Основные законы движения жидкостей и газов

Для расчета движения воды в трубопроводе нужно знать не так уж и много. Для этого не надо глубоко изучать физику, но всё же некоторое основные понятия изучить придется.

В этой статье я приведу самые основные формулы, которые вам пригодятся не только для расчетов, но и для общего понимания, что может влиять в вашем водопроводе на его течение. Иногда общее понимание процессов поможет вам избежать ошибок при монтаже системы.

Например, не все знают, что в части водопровода с трубами меньшего диаметра давление на стенки меньше, чем на участке с трубами большего диаметра. Почему возникает кавитация и вообще, что это такое. А это надо знать.

Статья будет обновляться и дополняться.

Уравнение неразрывности

Для жидкости, текущей в трубе, этот закон используют в такой форме (называемой уравнением неразрывности):

Где v — скорость жидкости S — площадь сечения трубы, по которой течёт жидкость. Сформулировать этот закон можно и так:

Сколько вливается жидкости в ёмкость, в данном случае в трубу, столько должно и выливаться, если условия течения не изменяются.

Скорость в узких участках трубы должна быть выше, чем в широких.

Уравнение Бернулли стационарного движения

Одно из важнейших уравнений гидромеханики было получено в 1738 г. швейцарским учёным Даниилом Бернулли (1700 — 1782). Ему впервые удалось описать движение идеальной жидкости, выраженной в формуле Бернулли.

Идеальная жидкость — жидкость, в которой отсутствуют силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда.

Уравнение стационарного движения, носящее его имя, имеет вид:

P +ρ⋅v²+ ρ⋅g⋅h = const
2

где P — давление жидкости, ρ − её плотность, v — скорость движения, g — ускорение свободного падения, h — высота, на которой находится элемент жидкости.

Смысл уравнения Бернулли в том, что внутри системы заполненной жидкостью (участка трубопровода) общая энергия каждой точками всегда неизменна.

В уравнении Бернулли есть три слагаемых:

  • ρ⋅v 2 /2 — динамическое давление — кинетическая энергия единицы объёма движущей жидкости;
  • ρ⋅g⋅h — весовое давление — потенциальная энергия единицы объёма жидкости;
  • P — статическое давление, по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Это уравнение объясняет почему в узких участках трубы растёт скорость потока и падает давление на стенки трубы. Максимальное давление в трубах устанавливается именно в месте, где труба имеет наибольшее сечение. Узкие части трубы в этом отношении безопасны, но в них давление может упасть настолько, что жидкость закипит, что может привести к кавитации и разрушению материала трубы.

Явление кавитации

Кавитация (от латинского cavitas — «углубление», «полость») — процесс образования полостей (пузырьков) в движущейся жидкости вследствие понижения давления.

Явление кавитации также объясняется уравнением Бернулли. Если скорость течения жидкости значительно возрастает, то давление сильно понизится — настолько, что жидкость закипит. Такую скорость можно получить, если пропускать жидкость через очень узкий участок трубы или при быстром обращении лопатки в водяном насосе.

Пузырьки по ходу движения жидкости попадают в области жидкости с нормальным давлением и там схлопываются. Это схлопывание сопровождается гидродинамическими эффектами, способными привести к разрушению трубы или стенок насоса.

Гидродинамика Эйлера и Навье-Стокса

Уравнение Бернулли позволяет объяснить очень много интересных гидродинамических явлений, но гораздо больше явлений, происходящих в движущихся жидкостях и газах, с его помощью объяснить нельзя, потому что этот закон для идеальной жидкости, т.е для жидкости, которая не обладает внутренним трением, а значит не создает гидравлическое сопротивление..

Реальная жидкость отличается от идеальной и обладает внутренним трением, или по другому называют вязкостью. Два соприкасающиеся элемента жидкости, двигающиеся в одном и том же направлении, но с разными скоростями, воздействуют друг на друга. Сила взаимодействия ускоряет медленно движущийся элемент жидкости и замедляет более быстрый.

Закон вязкого трения Ньютона

Ньютон предположил, что величина этой силы (называемой силой внутреннего трения) пропорциональна разности скоростей элементов жидкости. Следовательно, сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости:

F =η⋅S⋅dv
dy

η − коэффициент динамической вязкости.

Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются ньютоновскими, или жидкостями с линейной вязкостью.

Величину коэффициента динамической вязкости (и справедливость данного закона) Ньютон определил с помощью несложного опыта: он передвигал по поверхности жидкости пластинку с той или иной скоростью. Для того чтобы поддерживать эту скорость постоянной, требовалась сила, которая при небольшой глубине жидкости оказалась прямо пропорциональна площади S и скорости пластинки v и обратно пропорциональна глубине жидкости h:

F =η⋅S⋅v
h

И хотя при увеличении глубины жидкости h сила вязкого трения пластинки не становится исчезающе малой, эта формула довольно точно описывает взаимодействие между соприкасающимися элементами жидкости.

Чем больше разность скоростей, тем больше сила, с которой они воздействуют друг на друга, заставляя притормаживать слишком быстро движущиеся элементы и разгоняя слишком медленные.

В результате относительное движение в жидкости прекращается (но иногда это может произойти не очень скоро).

Уравнение Навье — Стокса для вязких жидкостей

В более строгой формулировке линейная зависимость вязкого трения от изменения скорости движения жидкости называется уравнением Навье — Стокса. Оно учитывает сжимаемость жидкостей и газов и, в отличие от закона Ньютона, справедливо не только вблизи поверхности твёрдого тела, но и в каждой точке жидкости (у поверхности твёрдого тела в случае несжимаемой жидкости уравнение Навье — Стокса и закон Ньютона совпадают).

Любые газы, для которых выполняется условие сплошной среды, подчиняются и уравнению Навье — Стокса, т.е. являются ньютоновскими жидкостями.

Вязкость жидкости и газа обычно существенна при относительно малых скоростях, потому иногда говорят, что гидродинамика Эйлера — это частный (предельный) случай больших скоростей гидродинамики Навье — Стокса.

При малых скоростях в соответствии с законом вязкого трения Ньютона сила сопротивления тела пропорциональна скорости. При больших скоростях, когда вязкость перестаёт играть существенную роль, сопротивление тела пропорционально квадрату скорости (что впервые обнаружил и обосновал Ньютон).

Критерий Рейнольдса

Такую зависимость вывел английский физик и инженер Осборн Рейнольдс (1842 — 1912).

Критерий, который помогает ответить на вопрос, есть ли необходимость учитывать вязкость, является число Рейнольдса Re. Оно равно отношению энергии движения элемента текущей жидкости к работе сил внутреннего трения.

Рассмотрим кубический элемент жидкости с длиной ребра n. Кинетическая энергия элемента равна:

Eкин =ρ⋅n³⋅
2

Согласно закону Ньютона, сила трения, действующая на элемент жидкости, определяется так:

F =η⋅v⋅n²= η⋅v⋅n
n

Работа этой силы при перемещении элемента жидкости на расстояние n составляет

а отношение кинетической энергии элемента жидкости к работе силы трения равно

Eкин=ρ⋅n³⋅v²
A2⋅ η⋅v⋅n²

Сокращаем и получаем:

Re =ρ⋅n⋅v

Re — называется числом Рейнольдса.

Таким образом, Re — это безразмерная величина, которая характеризует относительную роль сил вязкости.

Например, если размеры тела, с которым соприкасаются жидкость или газ, очень малы, то даже при небольшой вязкости Re будет незначительно и силы трения играют преобладающую роль. Наоборот, если размеры тела и скорость велики, то Re >> 1 и даже большая вязкость почти не будет влиять на характер движения.

Однако не всегда большие числа Рейнольдса означают, что вязкость не играет никакой роли. Так, при достижении очень большого (несколько десятков или сотен тысяч) значения числа Re плавное ламинарное (от латинского lamina — «пластинка») течение превращается в турбулентное (от латинского turbulentus — «бурный», «беспорядочный»), сопровождающееся хаотическими, нестационарными движениями жидкости. Этот эффект можно наблюдать, если постепенно открывать водопроводный кран: тонкая струйка течёт обычно плавно, но с увеличением скорости воды плавность течения нарушается. В струе, вытекающей под большим напором, частицы жидкости перемещаются беспорядочно, колеблясь, всё движение сопровождается сильным перемешиванием.

Появление турбулентности весьма существенно увеличивает лобовое сопротивление. В трубопроводе скорость турбулентного потока меньше скорости ламинарного потока при одинаковых перепадах давления. Но не всегда турбулентность плоха. В силу того что перемешивание при турбулентности очень значительно, теплообмен — охлаждение или нагревание агрегатов — происходит существенно интенсивнее; быстрее идёт распространение химических реакций.

Формула Бернулли закон по которому течет жидкость на любом отрезке трубы, что значительно помогает при проектировании трубопроводов, особенно с естественной циркуляцией.

Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.

Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.

Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.

Сайт может содержать контент, запрещенный для просмотра лицам до 18 лет.


источники:

http://megaobuchalka.ru/5/1338.html

http://domchtonado.ru/osnovnie-zakoni-dvizheniya-zhidkostey-i-gazov.html