Уравнение окружности 9 класс геометрия ответы

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Решение задач по теме «УРАВНЕНИЕ ОКРУЖНОСТИ»

В презентации к уроку геометрии для 9 класса представлены задачи по теме «Уравнение окружности».

Просмотр содержимого документа
«Решение задач по теме «УРАВНЕНИЕ ОКРУЖНОСТИ»»

Определите по уравнению окружности координаты ее центра и радиус :

А) (Х+2)² + ( У – 5)² = 49

Б) (Х+7)² + ( У + 1)² = 36

Ответ : О (-7; -1); R= 6

В) (Х- 6)² + ( У + 15)² = 81

Ответ : О (6; -15); R= 9

Ответ : О (0; 9); R= V͞2

Составьте уравнение окружности, если известны координаты ее центра М и радиус R :

В) М ( 1; -1) , R = ; = V͞11

Задание № 2 ( проверка)

Составьте уравнение окружности с центром в точке М (1; -4), проходящей через точку А(0; 3).

Составьте уравнение окружности, диаметром которой является отрезок АВ,

если А( -4; 7), В ( 2; 5 )

Составьте уравнение окружности, радиусом которой является отрезок КР,

если К (-2; 3), Р ( 5; — 23)

Составьте уравнение окружности с центром в точке

А(-4; 2), которая касается оси ординат.

Составьте уравнение окружности, проходящей через точку А( 1; -5 ), центр которой принадлежит оси абсцисс, а радиус равен 13.

Докажите, что данное уравнение является уравнением окружности, и укажите координаты центра и радиус этой окружности:

А) Х² + У² + 6х – 14у – 5 = 0;

Найдите координаты центра и радиус окружности ,заданной уравнением

Х² + У² — 18х +2у + 50 = 0. Определите положение точек

А(5; -1), В(2; 4) и С( 13; — 5 ) относительно этой окружности.

Решение задач по теме: «Уравнение окружностей»

Разделы: Математика

За неделю до проведения урока класс делится на четыре группы. Каждая готовит презентацию, отражающую название команды.

1. Образовательные:

  • систематизация знаний, умений и навыков по теме “Метод координат”,
  • совершенствование навыков решения задач.
  • 2. Развивающие:

  • развитие математически грамотной речи,
  • логического мышления,
  • культуры диалога.
  • 3. Воспитательные:

  • воспитывать познавательную активность,
  • культуру общения,
  • культуру диалога.
  • Ход урока

    I. Организационный момент.

    В начале урока выдается командам оценочный лист ( Приложение 1 ) с целью самостоятельной оценки учащимися степени участия каждого члена команды в подготовке к уроку и его проведении.

    Рассказываются правила урока. За каждое правильное решение команде выдается лепесток определенного цвета:

    все ответы верные – красный;
    одна ошибка – зеленый;
    две ошибки – жёлтый.

    Лепестки крепятся на магнитную доску, образуя цветок.

    Итоговая оценка выставляется с учетом этого бланка, а также учитывается количество и цвет набранных командой лепестков в цветке на доске.

    2. Знакомство с командами (представление презентаций, Приложение 2 ).

    3. Актуализация знаний учащихся.

    – На последних уроках геометрии мы познакомились с еще одним способом решения задач МЕТОДОМ КООРДИНАТ.

    Задавая фигуры уравнением и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Так мы поступили, когда выразили через координаты основную геометрическую величину – расстояние между точками, а затем, когда вывели уравнение окружности и прямой.

    Пользуясь координатами, можно истолковывать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функций – первый пример такого применения метода координат

    Метод координат в соединении с алгеброй составляет раздел геометрии, называемый “Аналитической геометрией”.

    Сегодня я предлагаю еще раз поговорить об уравнении окружности и проследить, как алгебра помогает в решении геометрических задач.

    4. Разминка.

    – На доске записан ряд уравнений. Какие фигуры они задают?

    Команды получают карточки с заданием. Время обдумывания 2мин.

    По истечению времени идет опрос команд по очереди.

    1 7.
    2.8.
    3. 9.
    4. 10.
    5. 11.
    6. 12.

    Последнее уравнение вызывает сомнения т.к. ранее не встречалось в таком виде.

    Учитель показывает как, выделив полный квадрат, получить уравнение окружности.

    Оценить результат работы команд.

    Выясните, будет ли данные уравнения задавать окружность, если да, то укажите радиус и координаты центра. Если нет, то почему?

    Каждая из команд получают свою карточку. Время 7 минут.

    1. 1.
    2. 2.
    3. 3.
    1. 1.
    2 2
    3 3

    Последние уравнение в каждой карточке не задает окружность, и учащиеся поясняют почему. Оценить ответы.

    1. Как могут взаимораспологаться две окружности? Дается время(3 мин.). Предлогается ребятам нарисовать различные варианты на ватмане и показать рисунки. После демонстрации и обсуждения всевозможных вариантов Предлогается следующая задача.

    2. Как взаиморасположены линии заданные уравнениями?

    и

    Изобразите ответ на обратной стороне ватмана (на нем, заранее, нанесена система координат.)

    Ответ:

    O

    Значит: первая внутри второй.

    Результат этого задания оценивается следующим образом:

    Команда, выполнившая первая – красный; вторая – зеленый; третья – желтый

    После подведения итогов предлагается задача общая для всех команд.

    Командам выдается карточка с кратким описанием условия. Текст задачи зачитывается.

    Окружность задана уравнением .

    Точка с координатами (5;4) является центром другой окружности касающейся первой внешним образом. Напишите уравнение этой окружности.

    Вопросы для обсуждения:

    -Поможет ли рисунок в решении задачи?

    -Что можно узнать из уравнения первой окружности?

    -Что надо знать, чтобы записать уравнение второй окружности?

    -Как можно узнать радиус второй окружности?

    Ответ:

    Перед следующим заданием полезно повторить:

    Какая окружность называется описанной около треугольника?

    Что значит, точка принадлежит графику уравнения?

    Что необходимо знать для написания уравнения окружности?

    Написать уравнение окружности описанной около треугольника с заданными координатами вершин.

    Какие, алгебраические, приемы могут быть использованы для решения поставленной задачи? (составление систем уравнений и приемы их решения).

    3. С (3;-7)4. В (1;-4)
    Д (8;-2)К (4;5)
    К (6;2)Д (3;-2)
    1. 2.
    3. 4.

    Следующую задачу решает учитель.

    Задача: Что представляет собой множество точек плоскости, отношение расстояний от которых до двух данных точек есть величина постоянная?

    Решение: Впервые эту задачу сформулировал и решил Аполлоний Пергский, (260-170 гг. до н.э.)

    Решение получилось очень сложное – поскольку применены геометрические приемы. Однако в работах французского математика Рене Декарта эта задача решена более элегантно. Декарт применил метод координат.

    Я предлагаю посмотреть на это решение. Итак, пусть даны две точки ,А и В и некоторое положительное число k, равное отношению расстояний до точки М.

    1случай. Если k=1,тогда множество точек М есть серединный перпендикуляр к отрезку АВ.

    2 случай. Пусть k целое не отрицательное число не равное 1

    Для удобства решения возьмем k=2 , т.е. МА: МВ=2.

    Введем систему прямоугольных координат. Совместим начало отсчета с точкой В. В качестве положительной полуоси x возьмем луч ВА. (рис.2)

    Тогда получим следующие координаты точек: В(0,0), А(a,0), М(x,y). Пусть a=3 опять для простоты рассуждений.

    Тогда, пользуясь формулами расстояния между двумя точками, запишем:

    Получили уравнение окружности с центром в точке (-1;0) и радиусом r=2.

    Значение радиуса не случайно вспомним, что мы выбрали k=2.

    Решая задачу в общем виде т.е. при условии ,что точка А имеет координаты (a;0) и k1 получим уравнение окружности в виде

    .

    Такая окружность называется окружностью Апполония.

    Подводится итог урока. Выставляются оценки.


    источники:

    http://multiurok.ru/files/rieshieniie-zadach-po-tiemie-uravnieniie-okruzhn-1.html

    http://urok.1sept.ru/articles/412785