Уравнение окружности касающейся двух прямых

Задача 54510 Составить уравнение окружности.

Условие

Составить уравнение окружности, касающейся двух параллельных прямых: 2x + — 5 = 0, 2x + у +15 — 0, причём одной из них — в точке А(2;1)

Решение

А(2;1) принадлежит прямой 2x +y – 5 = 0,
подставим координаты точки А в уравнение и получим верное равенство:
2*2+1-5=0
0=0 — верно

Проводим прямую перпендикулярную прямой 2x+y-5=0
и проходящую через точку А

2x+y-5=0 ⇒ y=-2x+5 — уравнение прямой с угловым коэффициентом k=-2

Произведение угловых коэффициентов перпендикулярных прямых равно (-1)

Значит, угловой коэффициент прямой, перпендикулярной y=-2x+5

Уравнение этой прямой

Чтобы найти b подставим координаты точки А

y=(1/2)x — уравнение прямой, перпендикулярной прямой 2x+y-5=0
и проходящей через точку А

Находим точку пересечения этой прямой с прямой 2x+y+15=0

O-центр окружности , это середина АВ
O(-2;-1)

Уравнение окружности касающиеся 2 параллельных прямых

Задача 54510 Составить уравнение окружности.

Условие

Составить уравнение окружности, касающейся двух параллельных прямых: 2x + — 5 = 0, 2x + у +15 — 0, причём одной из них — в точке А(2;1)

Решение

А(2;1) принадлежит прямой 2x +y – 5 = 0,
подставим координаты точки А в уравнение и получим верное равенство:
2*2+1-5=0
0=0 — верно

Проводим прямую перпендикулярную прямой 2x+y-5=0
и проходящую через точку А

2x+y-5=0 ⇒ y=-2x+5 — уравнение прямой с угловым коэффициентом k=-2

Произведение угловых коэффициентов перпендикулярных прямых равно (-1)

Значит, угловой коэффициент прямой, перпендикулярной y=-2x+5

Уравнение этой прямой

Чтобы найти b подставим координаты точки А

y=(1/2)x — уравнение прямой, перпендикулярной прямой 2x+y-5=0
и проходящей через точку А

Находим точку пересечения этой прямой с прямой 2x+y+15=0

O-центр окружности , это середина АВ
O(-2;-1)

Уравнение окружности

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

Так как |СМ| = \( \sqrt \), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

или 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

Уравнение окружности.

Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.

В формулировке окружности упоминается расстояние между точкой окружности и центром.

Формула расстояния между двумя точками М11; у1) и М22; у2) имеет вид:

,

Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.

Отметим произвольную точку М(х; у) на этой окружности.

.

Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.

Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .

Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:

В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):


источники:

http://b4.cooksy.ru/articles/uravnenie-okruzhnosti-kasayuschiesya-2-parallelnyh-pryamyh