Уравнение окружности на плоскости с рисунком

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось
Прямоугольная декартова система координат на плоскости
Формула для расстояния между двумя точками координатной плоскости
Уравнение окружности на координатной плоскости

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

Как нарисовать окружность на оси координат

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось
Прямоугольная декартова система координат на плоскости
Формула для расстояния между двумя точками координатной плоскости
Уравнение окружности на координатной плоскости

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

Как нарисовать окружность по координатам

Как построить окружность?

Как построить окружность?

Окружностью называется фигура которая состоит из всех точек плоскости равноудаленных от данной точки. Эта точка называется центром окружности.

Радиусом называется любой отрезок соединяющей точку окружности с ее центром.

Чтобы построить окружность необходимо знать уравнение окружности:

(х – а) 2 + (у – b) 2 = R 2

Точка С(а;b) центр окружности, радиус R, х и у – координаты произвольной точки окружности.

И так, чтобы построить окружность необходимо знать цент окружности и радиус. Рассмотрим пример:

Пример №1:
(х – 1) 2 + (у – 2) 2 = 4 2

Найдем центр окружности:
х – 1=0
x=1

Центр окружности будет находится в точке (1;2)

Найдем радиус окружности:
R 2 =4
R 2 =2 2
R=2

Построим окружность. Отметим сначала центр окружности, а потом отложим с четырех сторон (вверх, вниз, влево и право) длину радиуса и отметим эту длину точками. Потом проведем окружность.

Пример №2:
х 2 + (у + 1) 2 =1

Можно представить уравнение окружности ввиде:
(х-0) 2 + (у + 1) 2 =1 2

Найдем центр окружности:
х=0

Центр окружности будет находится в точке (0;–1)

Найдем радиус окружности:
R 2 =1
R 2 =1 2
R=1

Построим окружность.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Алгоритм генерации круга

Рисование круга на экране немного сложнее, чем рисование линии. Существует два популярных алгоритма для генерации круга — алгоритм Брезенхема и алгоритм средней точки круга . Эти алгоритмы основаны на идее определения последующих точек, необходимых для рисования круга. Давайте обсудим алгоритмы подробно —

Уравнение окружности: X 2 + Y 2 = r 2 , где r — радиус.

Алгоритм Брезенхема

Мы не можем отобразить непрерывную дугу на растровом дисплее. Вместо этого мы должны выбрать ближайшее положение пикселя, чтобы завершить дугу.

На следующем рисунке вы можете видеть, что мы поместили пиксель в положение (X, Y) и теперь должны решить, куда поместить следующий пиксель — в N (X + 1, Y) или в S (X + 1, Y-1).

Это может быть решено параметром решения d .

  • Если d
  • Если d> 0, то S (X + 1, Y-1) должен быть выбран в качестве следующего пикселя.

Алгоритм

Шаг 1 — Получить координаты центра окружности и радиуса и сохранить их в x, y и R соответственно. Установите P = 0 и Q = R.

Шаг 2 — Установите параметр решения D = 3 — 2R.

Шаг 3 — Повторите шаг 8, пока P ≤ Q.

Окружность на координатной плоскости

Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.

Окружность радиуса R с центром в начале координат представляется уравнением:


Окружность радиуса R с центром в точке C(a;b) представляется уравнением:



Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия ).
Это уравнение можно записать в виде:

Если уравнение помножить на любое число A, то получим

Примечание
Окружность относится к линии второго порядка, так как представляется уравнением второй степени.

Необходимые условия для этого:
1. Отсутствие в уравнение второй степени члена с произведением xy;
2. Коэффициенты при x 2 и y 2 были равны в уравнение вида:

3. Если выполняется неравенство

Как найти радиус и центр окружности

Уравнение Ax 2 +Bx+Ay 2 +Cy+D=0 если оно удовлетворяет примечаниям (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:

Пример 1
Уравнение 5x 2 -10x+5y 2 +20y-20=0
Здесь
A=5, B=-10, C=20, D=-20
Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство


Решая, получаем что центр есть (1;-2), а радиус R=3

Анимационный график окружности

Пример 2
Уравнение второй степени x 2 +4xy+y 2 =1 не является окружностью, так как в нём есть член 4xy.

Пример 3
Уравнение второй степени 4x 2 +9y 2 =36 не представляет окружность, так как в нём коэффициенты при x 2 и y 2 не равны.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 4

Рисунки и фигуры по координатам

Программа «Рисуем по координатам» является хорошим наглядным инструментом для создания (построения) рисунков и фигур по координатам на координатной плоскости (сетке). Все точки рисунка (картинки) наносятся по координатам в порядке их следования. После чего соединяем линией точки. В результате получится заданный рисунок (фигура) на координатной плоскости по координатам.

Программа «Рисуем по координатам» предназначена для рисования разной сложности рисунков (легкие, простые, сложные). и построения различных фигур по координатам точек на координатной плоскости и подойдет для 4, 5, 6 классов. Она позволяет наглядно увидеть, как можно использовать математику для построения (рисования) различных рисунков (картинок); животные, птицы, цветы, листья, деревья, машины, самолеты, ракеты, грибы, пауки, корабли, змеи, рыбки и другие.

СБОРНИК РИСУНКОВ И ФИГУР ПО КООРДИНАТАМ

В сборнике представлены рисунки и фигуры по координатам на клетчатом поле (сетке) в прямоугольной системе координат, где принято, что единичный отрезок 1 клетка. Для удобства выбора задания по возрасту, по способности и познавательным интересом, все задания представлены различного уровня сложности (легкие, простые, сложные) и имеют разную тематику. Можно научиться и самому создавать любой рисунок по координатам. Все готовые рисунки и картинки по координатам можно бесплатно и без регистрации скачать и распечатать на листе формата А4.

Рисование по координатам точек на координатной плоскости (сетке) это не только увлекательное занятие, но и поучительное как в области рисования, так и в математике. Программа «Рисуем по координатам» предназначена для использования, как на уроках математики, так и для организации интересного досуга дома. Саму же программу можно бесплатно скачать здесь.

Существует и другой способ создать рисунок (фигуру) по координатам не в программе «Рисуем по координатам», а на клетчатом поле. Данная тема интересна тем, что в координатной плоскости на клетчатом поле можно строить не только различные графики функций, но и увидеть связь природной красоты и строгой математики, создавая красивые рисунки и фигуры по координатам своими руками.

КАК РИСОВАТЬ ПО КООРДИНАТАМ

Рисунки и фигуры на координатной плоскости строятся по точкам. Каждая точка на плоскости имеет две координаты и записывается в виде двух чисел X (икс) и Y (игрек) через точку с запятой в скобках, например точка A (х; у), где первая цифра обозначает расстояние, отложенное от центра системы координат по оси X (икс), вторая цифра расстояние, отложенное от центра по оси Y (игрек). Рассмотрим построение координатных точек на координатной плоскости (сетке) на реальном примере.

Для этого нужно взять либо обычный лист из тетради в клеточку, либо распечатать готовый лист А4 в клетку его можно скачать здесь. Создаём прямоугольную систему координат. Для этого, рисуем координатные оси X и Y, где принимаем за единичный отрезок 1 клетку и для удобства нумеруем цифрами, как показано на рисунке. Можно распечатать уже готовый лист А4 в клетку с осями координат и с числами здесь. . Вот теперь все готово и можно приступать.

Возьмем для примера первую координату точку A (2;5) нашего рисунка или картинки и отложим эти расстояния по координатным осям X и Y. Первое число 2 мы отложим по оси X, а второе значение нашей координаты число 5 по координатной оси Y. В пересечении двух мысленно проведенных перпендикулярных линий к осям координат (они обозначены пунктирной линией на рисунке), мы получим нашу первую точку A (2;5).

Таким же методом строим координаты второй точки, третьей и так далее. После построения всех точек мы соединяем прямой линией первую точку со второй, вторую с последующей точкой в порядке их следования. После соединения всех точек мы получим заданный рисунок (фигуру) по своим координатам.

Чтобы найти координаты любой точки рисунка (фигуры) на плоскости, необходимо создать координатную плоскость на этом рисунке и опустить из этой точки перпендикуляры на координатные оси X и Y. Эти два значения и будут ее координаты.

РИСУНКИ ПО КООРДИНАТАМ ДЛЯ НАЧИНАЮЩИХ

В сборнике представлены различные рисунки на координатной плоскости с координатами для разного возраста. Рисунки (фигуры) по координатам для начинающих были построены или взяты из различных источников: журналов, интернет-ресурсов. Данный материал можно использовать как карточки с заданиями с целью закрепления материала. Все рисунки (фигуры) по координатам можно бесплатно и без регистрации скачать в формате pdf и распечатать на листе формата А4. Лист А4 в клетку или координатные сетки при необходимости можно скачать здесь.

ЛЕГКИЕ РИСУНКИ

ПРОСТЫЕ РИСУНКИ

СРЕДНИЕ РИСУНКИ

РИСУНКИ ПО КООРДИНАТАМ СЛОЖНЫЕ И КРАСИВЫЕ

В сборнике представлены красивые и сложные рисунки на координатной плоскости с координатами для разных возрастных групп. Все красивые рисунки (картинки) по координатам после построения можно еще и раскрашивать красками, карандашами и фломастерами. Красивые и сложные рисунки по координатам показывают, что можно совершенствовать линии контура рисунков и реализовывать свои фантазии безгранично. Лист А4 в клетку и координатные сетки при необходимости можно скачать здесь.

СОБАКИ

КООРДИНАТЫ ДЛЯ РИСУНКОВ

В сборнике представлены различные примеры наборов координат без рисунка, по которым надо восстановить рисунок. Для этого необходимо на чистом листе в клетку востановить по координатам исходный рисунок. Представленные наборы имеют разную сложность и будут интересны для разных возрастных групп. Любой материал можно бесплатно и без регистрации скачать в формате pdf и распечатать на листе формата А4. Лист А4 в клетку при необходимости можно скачать здесь.

ЛЕГКИЕ РИСУНКИ

ПРОСТЫЕ РИСУНКИ

СЛОЖНЫЕ РИСУНКИ

ДОРИСУЙ ВТОРУЮ ПОЛОВИНУ

В сборнике дорисуй вторую половину, все картинки представляют собой незаконченный симметричный рисунок, выполненный на клетчатом поле с одной стороны оси. Необходимо дорисовывать вторую половину рисунка соблюдая симметрию. Дорисуй вторую половину начинать рисовать надо от простых рисунков по клеткам к более сложным. Данное задания развивает зрительное восприятие, произвольное внимание, пространственное мышление, усидчивость и внимание к деталям, а также тренирует мелкую моторику и координацию движений руки. Лист А4 в клетку при необходимости можно скачать здесь.

ПРОСТЫЕ РИСУНКИ

СЛОЖНЫЕ РИСУНКИ

ПОВТОРИ КРАСИВЫЕ РИСУНКИ ПО ОБРАЗЦУ

В сборнике красивые рисунки по образцу, представлены различные примеры рисунков без координат на клетчатом поле для разных возрастных групп. Можно повторить рисунок по образцу на чистом листе А4 в клетку, а можно добавить оси координат и перевести рисунок в координаты. Все красивые рисунки по образцу можно дорабатывать и фантазировать под свой вкус. Любой красивый рисунок по образцу можно бесплатно и без регистрации скачать в формате pdf и распечатать на листе формата А4. Лист А4 в клетку или координатные сетки при необходимости можно скачать здесь.

КРАСИВЫЕ РИСУНКИ

МАШИНЫ

КАРТОЧКИ РИСУНКОВ

В сборнике карточки рисунков представлены разные рисунки и фигуры различной сложности. В карточках можно либо повторить рисунок рядом на чистом поле в клетку, либо написать координаты этого рисунка. Данный материал можно использовать как учебные карточки для закрепления пройденного материала, самостоятельных работ и различных конкурсов и викторин. Все карточки сборников рисунков по координатам можно бесплатно и без регистрации скачать в формате pdf и распечатать на листе формата А4. Лист А4 в клетку или координатные сетки при необходимости можно скачать здесь.

СБОРНИК

ДОРИСУЙ РИСУНКИ ПО ОБРАЗЦУ

В сборнике рисунки по образцу представлены примеры рисунков различной сложности, которые можно либо дорисовать рисунок по образцу, либо рядом на чистом листе в клетку нарисовать его полностью глядя на образец. Дорисуй рисунки по образцу подойдут для использования разного возраста. Все рисунки по образцу можно бесплатно и без регистрации скачать в формате pdf и распечатать на листе формата А4. Лист А4 в клетку или координатные сетки при необходимости можно скачать здесь.

ЛЕГКИЕ РИСУНКИ (СБОРНИКИ)

ПРОСТЫЕ РИСУНКИ

НАРИСУЙ КАРТИНКИ ПО КЛЕТКАМ И РАСКРАСЬ

В сборнике нарисуй картинки по клеткам и раскрась, представлены как отдельные картинки, так и примеры сборников рисунков различной сложности, которые можно перерисовать по образцу на чистом листе в клетку, а при желании и раскрасить. Картинки по клеткам будут интересны для разного возраста. Любые рисунки (картинки) по клеткам можно бесплатно и без регистрации скачать в формате pdf и распечатать на листе формата А4. Лист А4 в клетку или координатные сетки при необходимости можно скачать здесь.

ПРОСТЫЕ РИСУНКИ

РИСУНКИ (СБОРНИКИ)

ЛИСТ А4 В КЛЕТКУ. МИЛЛИМЕТРОВКА А4

Чистый лист А4 в клетку, координатная сетка для печати или миллиметровая бумага может понадобиться при рисования рисунков по координатам, картинок по образцу и других видов работ. Все пустые листы в клетку и миллиметровки расположены на листе формата A4 и их можно свободно скачать. Листы в клетку представлены; в темную клетку (черная), светлую клетку (серая), с осями координат и с числами. Листы миллиметровой бумаги представлены в 4-х вариантах; blue (синяя), green (зеленая), orange (оранжевая), pink (розовая).

ВОЗМОЖНОСТИ ПРОГРАММЫ

Программа «Рисуем по координатам» имеет два режима:

  1. Рисует на доске изображение по введенной Вами таблице точек координат, печатает в цвете таблицу и рисунок;
  2. Составит таблицу координат по нарисованному на доске изображению.

  • максимальный объем таблицы 255 строк;
  • точность записи рисунка — 0,5 единиц по обеим осям;
  • индикатором и переключателем режима работы — таблица /доска является значок наверху справа;
  • вводите в ячейках таблицы координаты точек Х и У, начало ломаной линии — обозначайте значком + в третьей колонке;
  • маленький квадрат, к примеру, глаз щенка обозначайте точкой в третьем столбце таблицы;
  • строки таблицы, которые следует удалить, обозначьте знаком — в третьем столбце;
  • в таблице не должно быть пустых или непонятных программе строк;
  • по мере заполнения таблицы проверяйте, что получается, нажимая кнопку «Нарисовать» (F4);
  • для поиска ошибок двигаетесь по таблице клавишами с вертикальными стрелками, на доске отрезок, соответствующий текущей строке таблицы, окрасится в красный цвет;
  • рисовать на доске отрезки надо, удерживая кнопку мыши;
  • кнопками справа можно изменять масштаб рисунка, сдвигать окно по доске;
  • печать осуществляется принтером, способным обеспечить плотность печати (dpi) 300 точек на дюйм. Тогда на листе А4 во всю его ширину будет рисунок затем таблица, по форме, принятой в газете «Математика..».

Загрузите примеры рисунков или скачайте с моего сайта и попробуйте дорисовать в них что-нибудь, или изобразите самостоятельно какой-нибудь домик, Вы увидите, как это здорово.

Этот сборник заданий поможет не только любому учителю организовать творческий подход к изучению данной темы, но и получить хорошие результаты в её усвоении.

Я надеюсь, что эти задания будут пользоваться спросом у учеников и учителей. Их можно применять как на уроках математики при изучении темы «Координатная плоскость», так и на занятиях кружка и факультатива.

Геометрия

План урока:

Уравнение линии в координатах

Если какое-то уравнение содержит две переменные – х и у, то какие-то пары значений этих чисел будут являться его решением, а какие-то нет. Однако каждой такой паре чисел можно сопоставить точку на координатной плоскости. Все вместе такие точки могут образовать линию, которую можно обозначить буквой L. В таком случае исходное уравнение называют уравнением линии L.

Мы уже рассматривали некоторые уравнения линий на плоскости, когда изучали графики функций. Если некоторую функцию у = у(х) рассматривать как уравнение, то тогда график функции у(х) будет той самой линией, которая задается уравнением. Например, парабола может быть задана уравнением у = х 2 .

Однако уравнение линии не обязательно выглядит как функция. Наиболее простой задачей является определение факта, принадлежит ли та или иная точка той линии, которая задана уравнением.

Задание. Какие из точек А (2;1), В (3; 2), С (– 2; 5) и D(0; 0) принадлежат линии, заданной уравнением:

Решение. Надо просто подставить координаты точек в уравнение и посмотреть, превратится ли оно при этом в верное равенство. Сначала подставляем точку А (2; 1):

Получилось верное равенство, значит, А принадлежит заданной линии. Теперь подставляем координаты В (3; 2):

Равенство неверное, следовательно, В на заданной линии не лежит. Проверяем третью точку С (– 2; 5):

Получили, что и С не является частью линии. Проверяем последнюю точку D (0; 0):

Справедливость равенства означает, что D принадлежит линии.

Использование координат и уравнений линии порождает две обратные друг другу задачи:

1) по заранее заданному уравнению определить геометрический вид линии;

2) для заданной геометрической фигуры, построенной на координатной плоскости, найти уравнение линии.

Геометрия занимается в первую очередь решением второй задачи. Первая же задача рассматривается по большей части в курсе алгебры при изучении графиков функций.

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

Но расстояние между точками М и С может быть вычислено по формуле

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры x0 и y0 окруж-ти равны нулю, и уравнение

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

Это ошибочное равенство, ведь в реальности левая часть больше:

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

Задание. Дано уравнение окружности

(x — 2) 2 + (y — 4) 2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

Далее можно, например, вычесть из (2) уравнение (3):

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

Ответ: (х – 3) 2 + (у – 3) 2 = 25

Уравнение прямой

Пусть на координатной плоскости построена произвольная прямая m. Для составления его уравнения отметим две точки А(х1; у1) и В(х2; у2) так, чтобы прямая m оказалась серединным перпендикуляром для отрезка АВ:

Тогда, согласно свойству серединного перпендикуляра,про любую точку М(х; у), лежащую на m, можно сказать, что она равноудалена от А и В, и наоборот, любая точка, НЕ лежащая на m, НЕ равноудалена от А и В. Это означает, что для точки M, если она лежит на m, должно выполняться равенство:

Квадратные корни равны, если одинаковы их подкоренные выражения, поэтому

Заметим, что так как точки А и В – различные, то хотя бы одна из разностей (2х2 – 2х1) и (2у2 – 2у1) будет не равна нулю, поэтому в (2) хотя бы один их коэффициентов а и b точно ненулевой. Это означает, что уравнение (2) является уравнением первой степени. Заметим, что (2) называют общим уравнением прямой, так как оно описывает любую прямую на плоскости. При более глубоком изучении геометрии вы познакомитесь с множеством других видов уравнений прямой (нормальным, каноническим, тангенциальным, параметрическим и т. п.).

В последнем примере коэффициент с равен нулю, поэтому его просто не записали.

Заметим важный аспект – одна и та же прямая может описываться различными уравнениями вида (2). Например, пусть уравнение прямой выглядит так:

Это уравнение равносильно предыдущему, хотя у них и различны коэффициенты а, b и c. Это значит, что однозначно определить эти коэффициенты при решении задач в большинстве случаев невозможно. Поэтому удобней рассмотреть два отдельных случая.

1) Если коэффициент b в уравнении прямой (2) не равен нулю, то его можно привести к виду:

Из курса алгебры мы помним, что ее графиком как раз является прямая. В большинстве случаев уравнение прямой удобно записывать именно в таком виде. Напомним, что число k называется угловым коэффициентом прямой.Поэтому (3) так и называют – уравнением прямой с угловым коэффициентом. В качестве примера подобных уравнений можно привести:

Каждое из них описывает вертикальную прямую, параллельную оси Оу.

Задание. Прямая задана уравнением

Постройте ее на координатной плоскости

Решение. Для построения прямой надо всего лишь найти две различные точки, лежащие на ней, и соединить их. Мы будем брать произвольные значения координаты х, подставлять их в уравнение и находить соответствующее им значение координаты у. Подставим х = 1:

Получили другую точку (– 1; – 1). Осталось отметить эти две точки на и соединить их:

Задание. Составьте уравнение прямой, проходящей через точки D(1; 10) и Е(– 1; – 4).

Решение. Задачу можно решить разными способами.

Способ 1 – универсальный и более сложный.

В общем виде уравнение прямой выглядит так:

Нам надо найти коэффициенты а, b и c. Для этого просто подставляем координаты известных точек в уравнение. Начнем с координат D:

Нам удалось выразить коэффициента двумя различными выражениями (1) и (2). Так как в них одинаковы левые части, то можно приравнять и правые части:

Мы можем взять любое значение коэффициента с (кроме нуля), и при этом получатся различные, но равносильные друг другу уравнения. Удобно взять с = 3, тогда в уравнении исчезнут дроби:

Это и есть ответ задания.

Далее рассмотрим более простой способ, который, однако, может потребовать анализа различных вариантов.

Уравнение прямой может иметь либо вид

если прямая является графиком линейной функции, либо вид

если прямая параллельна оси Оу. Во втором случае у всех точек прямой абсцисса должна быть одинакова, однако у точек D(1; 10) и Е(– 1; – 4) она различна, поэтому ее точно можно описать уравнением

Надо найти коэффициенты k и d. Подставим в уравнение координаты D(1; 10):

Итак, уравнение можно записать так:

Задание. Запишите уравнение прямой, если ей принадлежат точки:

Подставим сюда уже известное нам значение d:

В (1) и (2) мы выразили d с помощью разных выражений, которые теперь можно приравнять:

То, что коэффициент k оказался нулевым, означает, что прямая параллельна оси Ох.

в) Попытаемся сделать те же действия, что и в двух предыдущих примерах, подставляя точки в уравнение у = kx + d:

На этот раз мы не смогли найти коэффициент k, а вместо этого получили ошибочное равенство. То есть уравнение просто не имеет решений. Что же это значит? Из этого факта следует, что в этом примере уравнение прямой НЕ может иметь вид

Значит, оно имеет другой вид:

Действительно, у обеих точек (2; 7) и (2; 8) одинаковы абсциссы. Это значит, что прямая, проходящая через них, вертикальная. Коэффициент С как раз равен значению этой абсциссы, так что уравнение выглядит так:

Ответ а) у = 1,5х + 3; б) у = 8; в) х = 2.

Задание. Найдите площадь треугольника MON, изображенного на рисунке, если известно, что M и N лежат на прямой, задаваемой уравнением:

Решение. ∆MON – прямоугольный, и для вычисления его площади нужно найти длины OM и ON. По рисунку видно, что М лежит на оси Ох, то есть у неё ордината нулевая:

Зная это, легко найдем и абсциссу М, ведь координаты М при их подстановке в уравнение прямой должны давать верное равенство:

Далее рассмотрим точку N. Она уже лежит на Оу, а потому у нее нулевой оказывается абсцисса:

Напомним, что площадь прямоугольного треугольника может быть вычислена по формуле:

Задачи на пересечение двух фигур

Метод координат помогает находить точки, в которых пересекаются те или иные геометрические фигуры. В большинстве случаев надо просто составить систему из уравнений, задающих эти фигуры, и найти их общее решение. В курсе алгебры мы уже рассматривали как решение простых, в основном линейных систем, так и решение более сложных, нелинейных систем. Рассмотрим несколько задач на эту тему.

Задание. Две прямые заданы уравнениями:

Определите, в какой точке они пересекаются.

Решение. Если точка пересечения прямых существует, то ее координаты являются решением каждого из двух уравнений. Таким, образом, нам надо просто решить систему:

Мы нашли единственное решение системы – это пара чисел (3; – 2). Эта же пара определяет координаты искомой нами точки.

Задание. Найдите точки пересечения окруж-ти и прямой, если они задаются уравнениями

Решаем квадратное уравнение, используя дискриминант:

Мы нашли два различных значения у. Это значит, что прямая пересекается с окруж-тью в двух различных точках, а найденные нами числа – их ординаты. Отметим, что возможны случаи, когда корень только один (и тогда у окруж-ти с прямой одна общая точка, то есть они касаются), и когда корней вовсе нет (тогда окруж-ть и прямая не пересекаются). В нашем же примере осталось найти абсциссы точек. Для этого используем уравнение (3):

Получили в итоге пары точек (3; 8) и (6; 7), в которых заданная окруж-ть и прямая пересекаются.

Ответ: (3; 8) и (6; 7).

Задание. Две окруж-ти заданы уравнениями:

Для ее решения сначала раскроем скобки в обоих уравнениях и приведем подобные слагаемые:

Нам удалось выразить у через х. Теперь снова запишем одно из исходных уравнений окруж-ти, но заменим в нем у с помощью только что найденного выражения:

Мы нашли абсциссы точек пересечения окруж-тей, теперь можно вернуться к (1), чтобы найти и ординаты:

Получили точки (5; 2) и (4; 3).

В конце решим одну задачу чуть более высокого уровня сложности.

Задание. К окруж-ти радиусом 5, чей центр совпадает с началом координат, построена касательная в точке (3; 4). Составьте уравнение этой касательной.

Решение. Сначала составим уравнение окруж-ти. Так как ее центр находится в начале координат, а радиус имеет длину 5, то оно примет вид:

Нам надо найти коэффициенты k и d, а для этого надо составить какие-нибудь уравнения с этими переменными. Нам известно, что касательная проходит через точку (3; 4), а потому эти координаты можно подставить в (2):

Обратите внимание, что мы получили квадратное уравнение относительно переменной х. Если бы нам были известны k и d, то мы смогли бы его решить, и тогда мы определили бы точки пересечения прямой и окруж-ти. В этой задаче k и d нам неизвестны, но мы знаем, что окруж-ть и прямая касаются, то есть имеют ровно одну общую точку. Но тогда и квадратное уравнение (4) должно иметь только одно решение! Это означает, что его дискриминант равен нулю. Сначала выпишем коэффициенты квадратного уравнения, используемые при вычислении дискриминанта:

Теперь у нас есть два уравнения, (3) и (5), которые содержат только переменные k и d. Осталось лишь совместно решить их. Для этого подставим (3) в (5):

В рамках урока мы выяснили, как выглядят уравнения окруж-ти и прямой, а также научились решать несколько типовых заданий, в которых эти уравнения необходимо использовать. Хотя формулы, используемые при этом, могут показаться слишком сложными, главное – просто набить руку в их применении, решая как можно больше задач.


источники:

http://b4.cooksy.ru/articles/kak-narisovat-okruzhnost-na-osi-koordinat

http://100urokov.ru/predmety/urok-3-linii-na-ploskosti