Уравнение окружности в точке пересечения графиков функций

Уравнение с двумя переменными и его график. Уравнение окружности

п.1. Понятие уравнения с двумя переменными

Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, \(\mathrm\) – гипербола.

Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = \(\mathrm<\frac1x>\) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

п.2. Обобщенные правила преобразования графика уравнения

Пусть F(x; y) = 0 – исходный график некоторой функции

Симметричное отображение относительно оси OY

Симметричное отображение относительно оси OX

Центральная симметрия относительно начала координат

Параллельный перенос графика на a единиц вправо

Параллельный перенос графика на a единиц влево

Параллельный перенос графика на b единиц вниз

Параллельный перенос графика на b единиц вверх

Сжатие графика к оси OY в a раз

Сжатие графика к оси OX в b раз

F(x; by) = 0
0 Например:

Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ \mathrm <(x-2)^2+(y-1)^2=9>$$

п.4. Примеры

Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: \( \mathrm<7>=-\frac<2> + 2 > \) – это прямая

б) xy + 4 = 0
Выразим y из уравнения: \( \mathrm> \) – это гипербола

в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом \( \mathrm=2> \)

г) x 2 + 5y – 2 = 0
Выразим y из уравнения: \( \mathrm<5>> \) – это парабола

Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
\( \mathrm<5>=-\frac25|x|+2> \)
Строим график для \( \mathrm \), а затем отражаем его относительно оси OY в левую полуплоскость.

б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

д) \(\mathrm<\frac<|x-1|><2>+2|y-2|=4>\)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.

Уравнение окружности в точке пересечения графиков функций

Уравнение с двумя переменными и его график. Уравнение окружности

п.1. Понятие уравнения с двумя переменными

Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, \(\mathrm \) – гипербола.

Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = \(\mathrm \) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

п.2. Обобщенные правила преобразования графика уравнения

Пусть F(x; y) = 0 – исходный график некоторой функции

Симметричное отображение относительно оси OY

Симметричное отображение относительно оси OX

Центральная симметрия относительно начала координат

Параллельный перенос графика на a единиц вправо

Параллельный перенос графика на a единиц влево

Параллельный перенос графика на b единиц вниз

Параллельный перенос графика на b единиц вверх

Сжатие графика к оси OY в a раз

Сжатие графика к оси OX в b раз

F(x; by) = 0
0 Например:

Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ \mathrm $$

п.4. Примеры

Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: \( \mathrm =-\frac + 2 > \) – это прямая

б) xy + 4 = 0
Выразим y из уравнения: \( \mathrm > \) – это гипербола

в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом \( \mathrm =2> \)

г) x 2 + 5y – 2 = 0
Выразим y из уравнения: \( \mathrm > \) – это парабола

Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
\( \mathrm =-\frac25|x|+2> \)
Строим график для \( \mathrm \), а затем отражаем его относительно оси OY в левую полуплоскость.

б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

д) \(\mathrm +2|y-2|=4>\)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.

Является ли окружность функцией

Уравнение с двумя переменными и его график. Уравнение окружности

п.1. Понятие уравнения с двумя переменными

Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, \(\mathrm \) – гипербола.

Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = \(\mathrm \) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

п.2. Обобщенные правила преобразования графика уравнения

Пусть F(x; y) = 0 – исходный график некоторой функции

Симметричное отображение относительно оси OY

Симметричное отображение относительно оси OX

Центральная симметрия относительно начала координат

Параллельный перенос графика на a единиц вправо

Параллельный перенос графика на a единиц влево

Параллельный перенос графика на b единиц вниз

Параллельный перенос графика на b единиц вверх

Сжатие графика к оси OY в a раз

Сжатие графика к оси OX в b раз

F(x; by) = 0
0 Например:

Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ \mathrm $$

п.4. Примеры

Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: \( \mathrm =-\frac + 2 > \) – это прямая

б) xy + 4 = 0
Выразим y из уравнения: \( \mathrm > \) – это гипербола

в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом \( \mathrm =2> \)

г) x 2 + 5y – 2 = 0
Выразим y из уравнения: \( \mathrm > \) – это парабола

Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
\( \mathrm =-\frac25|x|+2> \)
Строим график для \( \mathrm \), а затем отражаем его относительно оси OY в левую полуплоскость.

б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

д) \(\mathrm +2|y-2|=4>\)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.

Является ли уравнение окружности функцией?

Геометрия | 5 — 9 классы

Является ли уравнение окружности функцией?

Конечно является, ведь что такое функция — это зависимость одной переменной от другой, т.

Окружности имеет график — а функция также может быть представлена в виде графика!

Является ли данное уравнение, уравнением окружности х2 + у2 + 8х — 4у + 40 = 0?

Является ли данное уравнение, уравнением окружности х2 + у2 + 8х — 4у + 40 = 0.

Что является радиусом окружности?

Что является радиусом окружности?

Уравнение окружности в точке пересечения графиков функций у = и радиусом r , какой будет иметь вид?

Уравнение окружности в точке пересечения графиков функций у = и радиусом r , какой будет иметь вид?

Докажите, что линия заданная уравнением является окружностью?

Докажите, что линия заданная уравнением является окружностью.

Напишите уравнение окружности, которая проходит через точки А (−7 ; 8) и В (−3 ; −4)?

Напишите уравнение окружности, которая проходит через точки А (−7 ; 8) и В (−3 ; −4).

При этом хорда АВ является диаметром окружности.

Составить уравнение окружности, диаметром которий является отрезком AB, если( — 5 ; 9), B(7 ; — 3)?

Составить уравнение окружности, диаметром которий является отрезком AB, если( — 5 ; 9), B(7 ; — 3).

Помогите, пожалуйста?

Точки А( — 4, 1) В (4 ; 7) Являются точками диметра окружности.

Найти диаметр окружности, координаты окружнотси, составить уравнение окружности.

Решите плз?

1) Доказать, что уравнение x² + y² + 4x — 2y — 4 = 0 является уравнением окружности.

Найти ее центр и радиус.

Как определить является ли уравнение уравнением окружности?

Как определить является ли уравнение уравнением окружности?

Даны точки А ( — 2 ; 14) и B (16 ; — 10)?

Даны точки А ( — 2 ; 14) и B (16 ; — 10).

Cоставьте уравнение окружности с центром окружности, диаметром которой является отрезок AB.

Вы зашли на страницу вопроса Является ли уравнение окружности функцией?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Площадь ромба равна четырем площадям треугольников (на которые диагонали делят этот ромб). Площадь треугольника равна половине произведения высоты (3) на основание (7), то есть 7 * 3 / 2. Общая площадь получается равной : 4 * 7 * 3 / 2 = 42.

Обозначим х — второй катет, у — гипотенуза. По теореме Пифагора y ^ 2 — x ^ 2 = 13 ^ 2 = 169 Тогда (у + х) (у — х) = 169 Число 169 можно разложить на 2 множителя только двумя способами : 169 = 13 * 13, или 169 = 169 * 1 Получаем две системы : 1) у +..

Выходит, что все стороны равны. А четырехугольник, у которого все стороны равны — это квадрат. Диагонали квадрата пересекаются под прямым углом.

1. a) AD, б) CF 2. 54° 3. 20° 4. 81° 99° 5. 120° 6. 65° 7. 140°.

C = 16√2 a = b r = (a + b — c) / 2 a² + b² = c²⇒2a² = c² 2a² = (16√2)² 2a² = 16² * 2 a² = 16² a = 16 r = (16 + 16 — 16√2) / 2 = (32 — 16√2) / 2 = 16 — 8√2 не знаю как дальше преобразовать.

Task / 26233756 — — — — — — — — — — — — — — — — — — — — ΔBFA

ΔBDC AF / CD = AB / CB⇒AF = (AB / CB) * CD AF = (7, 5 / 3, 2) * 2, 4 = 7, 5 * 0, 75 = 5, 625 (см)|| 5 625 / 1000 = 55 * 125 / 8 * 125 = 5 5 / 8 * * * или sin∠B = AF / AB = CD / CB * * *.

Решение в приложении.

Площадь ромба равна половине произведения его диагоналей : S = 1 / 2 d1·d2 S = 1 / 2 * 4 * 6 = 12 см.

Лёгкое задание 11 класс.

1645 — 1 1646 — 4 это элементарно. Просто соедини точки по линейке и клетки посчитай.

Уравнение окружности.

Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

Геометрическая интерпретация уравнения окружности – это линия окружности.

Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:


Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

Примеры решения задач про уравнение окружности

Задача. Составить уравнение заданной окружности

Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2

Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3

Получаем:
(x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
или
(x — 2 ) 2 + (y + 3 ) 2 = 16 .

Задача. Принадлежит ли точка уравнению окружности

Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.

Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3

Проверим истинность полученного равенства
( x — 2) 2 + ( y + 3) 2 = 16
( 2 — 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно

Таким образом, заданная точка не принадлежит заданному уравнению окружности.

Уравнение окружности

Уравнение окружности с центром в точке (a;b) и радиусом R в прямоугольной системе координат имеет вид

1. Пусть в прямоугольной системе координат задана окружность с центром в точке A (a;b) и радиусом R (R>0).

Чтобы составить уравнение этой окружности, выберем на окружности произвольную точку B (x;y).

По определению окружности, расстояние от центра до любой точки окружности равно радиусу R, то есть AB=R.

Так как B (x;y) — произвольная точка окружности, координаты любой точки окружности удовлетворяют этому уравнению.

2. Если пара чисел (xo;yo) удовлетворяет данному уравнению, то

А это значит, что расстояние между точками C(xo;yo) и A(a;b) равно R. Значит, точка C(xo;yo) принадлежит окружности с центром в точке A(a;b) и радиусом R.

Следовательно, данное уравнение фигуры является уравнением окружности.

Уравнение окружности в точке пересечения графиков функций

Покажем, как задачи с параметрами можно решать графически.

Найдём количество решений уравнения

в зависимости от $$ a$$.

Искомое количество решений совпадает с числом точек пересечения графиков функций

График первой функции получается из графика функции, который был построен в предыдущем примере. Для этого нужно воспользоваться преобразованием вида ПР1 то есть график $$ y=_<1>\left(x\right)$$ имеет такой вид, как показано на рис. 43 $$ f\left(0\right)=\sqrt<5>$$.

Графиком функции $$ y=a$$ будет прямая, параллельная оси $$ Ox$$ (рис. 43). При этом она пересекает ось ординат в точке $$ (0,a)$$. Легко видеть, что при $$a 3$$ прямая $$ y=a$$ не имеет пересечений с графиком $$ y=_<1>\left(x\right)$$, при $$ a=3$$ и $$ a\in [0;\sqrt<5>)$$ есть две точки пересечения, а при $$ a\in [\sqrt<5>;3)$$ – четыре общие точки и при $$ a=\sqrt<5>$$ – три общие точки. Остаётся лишь сформулировать ответ.

При $$ a\in (-\infty ;0)\bigcup (3;+\infty )$$ решений нет, при $$ a\in [0;\sqrt<5>)\bigcup \left\<3\right\>$$ – два решения, при $$ a\in \left\<\sqrt<5>\right\>$$ – три решения, при $$ a\in (\sqrt<5>;3)$$ – четыре решения.

Найдём количество решений уравнения в зависимости от $$ a$$:

Методом интервалов нетрудно построить график функции

Количество решений уравнения совпадает с числом точек пересечения этого графика с прямой $$ f\left(x\right)=a$$ (рис. 44).

Проанализировав график, несложно выписать ответ.

При $$ a\in (8;+\infty )$$ уравнение имеет 2 решения, при $$ a=8$$ уравнение имеет бесконечно много решений, при $$ a\in (-\infty ;8)$$ решений нет.

Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что графиком уравнения называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.

Найдём количество решений системы уравнений

в зависимости от $$ a$$.

Для решения необходимо построить график уравнения $$ \left|x\right|+\left|y\right|=4$$. Это можно сделать, последовательно выполнив построения таких графиков:

График второго уравнения – окружность с центром в точке $$ O(0;0)$$ и радиусом $$ \left|a\right|$$. Изобразим оба этих графика на координатной плоскости $$ xOy$$.

Как видим, при $$|a| 4$$ графики не пересекаются. При $$ \left|a\right|=2\sqrt<2>$$ или $$ \left|a\right|=4$$ есть 4 точки пересечения. При остальных $$ a$$ есть 8 точек пересечения. Таким образом, можно сформулировать ответ.

При $$ a\in (-\infty ;-4)\cup (-2\sqrt<2>;2\sqrt<2>)\cup (4;+\infty )$$ система не имеет решений;

при $$ a\in \<-4;-2\sqrt<2>;2\sqrt<2>;4\>$$ система имеет 4 решения;

при $$ a\in (-4;-2\sqrt<2>)\cup (2\sqrt<2>;4)$$ система имеет 8 решений.

В следующей задаче нам потребуется понятие локального экстремума функции. Говорят, что функция $$ y=f\left(x\right)$$ имеет локальный максимум в точке $$ _<0>$$, если для некоторого числа $$ε > 0$$ при $$|x − x_0| 0$$ при $$|x − x_0| 0$$ график $$ y=at-3$$ касается линии $$ y=\sqrt$$ (cм. рис. 46). Уравнение $$ D=0$$ имеет единственный положительный корень `a=1/4`. Следовательно, `a_2=1/4`. Если $$\dfrac3<16>\leq a 1/4` они не имеют общих точек.

Рассмотрим пример использования этого правила в задаче.

Найдём все значения параметра $$ a$$, при которых система

имеет хотя бы одно решение.

Неравенство системы после выделения полных квадратов можно записать в виде $$ ^<2>-8\left|x\right|+16+^<2>-8\left|y\right|+16\le 1$$ или $$ \left(\right|x|-4<)>^<2>+(\left|y\right|-4<)>^<2>\le 1$$. Множество $$ E$$ решений этого неравенства – объединение кругов $$ _<1>$$, $$ _<2>$$, $$ _<3>$$, $$ _<4>$$ (вместе с их границами) радиуса $$ 1$$ (см. рис. 47) с центрами $$ _<1>(4;4)$$, $$ _<2>(4;-4)$$, $$ _<3>(-4;-4)$$, $$ _<4>(-4;4)$$. Запишем уравнение системы в виде

Это уравнение задаёт окружность $$ L$$ радиуса $$ \left|a\right|$$ с центром в точке $$ M(0;1)$$, или точку $$ (0;1)$$ при $$ a=0$$. Исходная система имеет хотя бы одно решение при тех значениях $$ a$$, при которых окружность $$ L$$ имеет общие точки с множеством $$ E$$. При этом ввиду симметричного расположения соответствующих пар кругов относительно оси ординат достаточно выяснить, при каких значениях $$ a$$ окружность $$ L$$ имеет общие точки с кругами, центрами которых являются точки $$ _<1>$$ и $$ _<2>$$. Проведём из точки $$ M$$ лучи $$ _<1>$$ и $$ _<2>$$ в направлении точек $$ _<1>$$ и $$ _<2>$$. Пусть $$ _<1>$$ и $$ _<1>$$ – точки пересечения $$ _<1>$$ и окружности с центром $$ _<1>$$, $$ _<2>$$ и $$ _<2>$$ – точки пересечения $$ _<2>$$ и окружности с центром $$ _<2>$$. Тогда из геометрических соображений имеем:

При $$ 4\le \left|a\right|\le 6$$ окружность с центром $$ M$$ имеет общие точки с кругом $$ <\omega >_<1>$$ , а при $$ \sqrt<41>-1\le \left|a\right|\le \sqrt<41>+1$$ – с кругом $$ <\omega >_<2>$$.

а) Если $$b 0$$. Эта система не имеет решений при $$ a=0$$ и поэтому $$b 0$$. Теперь мы прибегнем к графическому методу. Рассмотрим два случая: $$0 1$$. Если $$b > 1$$, то $$\sqrt Эта система не имеет решений, так как прямая $$ y=x-b$$ не пересекает график функции $$ y=|^<2>-b|$$ (см. рис. 48). Если $$0 0$$).

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.

Найдём все значения `a`, при каждом из которых уравнение

Рассмотрим функции `f(x)-a|x-3|` и `g(x)=5/(x+2)`.

Если построить график функции `f(x)` для разных `a` (рис. 50) и график функции `g(x)` (рис. 51), то можно без проблем исследовать на промежутке `[0;+oo)` уравнение `f(x)=g(x)`.

При `a При `a>0` функция `f(x)` возрастает на промежутке `(3;+oo)`. Функция `g(x)` убывает на этом промежутке, поэтому уравнение `f(x)=g(x)` всегда имеет ровно одно решение на промежутке `(3;+oo)`, поскольку `f(3) g(3+1/a)`. На промежутке `[0;3]` уравнение `f(x)=g(x)` принимает вид `3a-ax=5/(x+2)`. Это уравнение сводится к уравнению `ax^2-ax+(5-6a)=0`. Будем считать, что `a>0`, поскольку случай `a

Пусть уравнение имеет два корня, то есть `a>4/5`. Тогда оба корня меньше `3`, поскольку при `x>=3` значения функции `3a-ax` неположительны, а значения функции `5/(x+2)` положительны. По теореме Виета сумма корней равна `1`, а произведение равно `5/6-6`. Значит, больший корень всегда принадлежит промежутку `[0;3]`, а меньший принадлежит этому промежутку тогда и только тогда, когда `5/a-6>=0`, то есть `a 5/6`;

– три корня при `4/5

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости. В следующем примере будем использовать известный подход к задачам, содержащим некоторые переменные в квадрате. Суть этого подхода — рассмотрение выражения как квадратичной функции относительно какой-нибудь переменной (остальные переменные при этом считаются параметрами) с последующим использованием известных свойств квадратичной функции.

Найдём все значения параметра $$ a$$, при каждом из которых система уравнений

имеет ровно три решения.

Первое уравнение данной системы равносильно совокупности двух уравнений $$ |y+9|+|x+2|=2$$ и $$ ^<2>+^<2>=3$$. Первое из них задаёт квадрат $$ G$$ с центром $$ (-2;-9)$$, диагонали которого равны $$ 4$$ и параллельны осям координат. Второе задаёт окружность $$ S$$ с центром $$ (0;0)$$ радиуса $$ \sqrt<3>$$ (см. рис. 52).

Второе уравнение исходной системы при $$a > 0$$ задаёт окружность $$ \Omega $$ с центром $$ (-2;-4)$$ радиуса $$ R=\sqrt$$.

Отметим, что при $$a Рассмотрев случаи внешнего и внутреннего касания окружностей $$ \Omega $$ и $$ S$$, можно заключить, что они имеют ровно `1` общую точку при $$ R=\sqrt<20>\pm \sqrt<3>$$, ровно `2` общие точки при $$ R\in (\sqrt<20>-\sqrt<3>;\sqrt<20>+\sqrt<3>)$$ и ни одной общей точки при остальных $$ R$$. Поскольку центры окружности $$ \Omega $$ и квадрата $$ G$$ лежат на прямой $$ x=-2$$, то $$ \Omega $$ и $$ G$$ имеют ровно `1` общую точку при $$ R=3$$ или $$ R=7$$, ровно `2` общие точки при $$ R\in (3;7)$$ и ни одной общей точки при остальных значениях $$ R$$. Для того чтобы у системы было 3 решения, необходимо и достаточно, чтобы окружность $$ \Omega $$ имела `2` общие точки с квадратом $$ G$$ и `1` общую точку с окружностью $$ S$$ или наоборот. Рассмотрим значения $$ R$$, при которых окружность $$ \Omega $$ имеет с квадратом $$ G$$ или окружностью $$ S$$ ровно `1` общую точку.

1) $$ R=\sqrt<20>+\sqrt<3>$$. Тогда есть ровно `1` общая точка с окружностью $$ S$$, и ровно `2` общие точки с квадратом $$ G$$ (т. к. $$3 \sqrt <20>+ \sqrt<3>$$), т. е. у системы 1 решение.

Итак, подходят $$ R=3$$ и $$ R=\sqrt<20>+\sqrt<3>$$. Тогда искомые значения параметра $$ a=<3>^<2>=9$$ и $$ a=(\sqrt<20>+\sqrt<3><)>^<2>=23+4\sqrt<15>$$.


источники:

http://b4.cooksy.ru/articles/uravnenie-okruzhnosti-v-tochke-peresecheniya-grafikov-funktsiy

http://zftsh.online/articles/4714