Уравнение описывающее свободные электромагнитные колебания имеет форму

Лекция № 5 Свободные электромагнитные колебания

СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Выписка из рабочей программы дисциплины «Колебания и волны» – 010900

2.1 Свободные электромагнитные колебания.

Колебательный контур. Процессы в идеализированном колебательном контуре. Электромагнитные гармонические колебания. Дифференциальное уравнение свободных незатухающих электромагнитных колебаний и его решение. Собственная частота свободных электромагнитных колебаний. Формула Томсона. Закон сохранения и превращения энергии в идеализированном колебательном контуре.

1. Свободные электромагнитные колебания

Электромагнитные колебания представляют собой взаимосвязанные периодические изменения зарядов, токов, характеристик электрического и магнитного полей, сопровождающиеся взаимными превращениями этих полей.

Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из конденсатора ёмкостью и катушки индуктивностью .

Если сопротивление контура равно нулю, колебательный контур называют идеальным. В идеальном колебательном контуре отсутствуют потери энергии, поэтому собственные колебания, возникающие в нем, являются незатухающими.

Рассмотрим процесс возникновения свободных незатухающих колебаний в идеальном колебательном контуре. Чтобы возбудить колебания, необходимо сообщить конденсатору некоторый заряд, а потом замкнуть ключ К (рис.1).

Пусть в начальный момент времени () конденсатору сообщили некоторый заряд . При этом напряжение между его обкладками , напряженность электрического поля и энергия электрического поля – максимальны, а ток в цепи отсутствует (рис. 2,а). Затем начинается разряд конденсатора. Возникающий при этом разрядный ток, проходя через катушку , создает в ней изменяющееся магнитное поле, которое продолжает расти до тех пор, пока ток не достигает максимального значения . При этом вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки , а индукция магнитного поля достигает максимума (рис. 2,б). Несмотря на то, что конденсатор полностью разрядился, ток в колебательном контуре не прекращается и поддерживается э. д.с. самоиндукции, что в итоге приведет к перезарядке конденсатора. При этом заряд конденсатора, напряжение между обкладками, напряженность и энергия электрического поля вновь достигают максимальных значений, однако полярность обкладок конденсатора и направление напряженности электрического поля между ними противоположны тем, какие были в начальный момент времени (рис. 2, в). По окончании перезарядки энергия магнитного поля катушки перейдет в энергию электрического поля конденсатора. Начиная с этого момента, ток в контуре меняет направление, и процесс воспроизводится в обратном направлении (рис. 2, г). Система возвращается в исходное состояние (рис. 2, д), и начинается следующий период колебаний.

В контуре возникают электромагнитные колебания, при которых происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. Рисунок 2 представляет собой график зависимости заряда конденсатора от времени , , на котором значениям заряда в моменты времени сопоставлены соответствующие состояния колебательного

контура (а; б; в; г; д).

Так как сопротивление контура равно нулю, т. е. нет потерь энергии, такой процесс должен продолжаться бесконечно, а возникающие колебания называются собственными или свободными.

Период собственных незатухающих колебаний в колебательном контуре определяется формулой Томсона

, (5)

а циклическая частота

. (6)

Колебания заряда происходят по гармоническому закону

, (7)

где – максимальный заряд на обкладках конденсатора;

– циклическая частота собственных колебаний;

– начальная фаза.

На рисунках 3 и 4 представлены соответственно идеальный колебательный контур и график зависимости при .

Очевидно, что изменение напряжения между обкладками описывается таким же законом

(8)

где – максимальное напряжение между обкладками конденсатора.

Так как электрический ток характеризует скорость изменения заряда на обкладках конденсатора,

(9)

где – амплитуда силы тока.

Из выражений (7), (8), (9) следует, что колебания заряда (напряжения) и тока в контуре сдвинуты по фазе на , т. е. ток достигает максимального значения в те моменты времени, когда заряд и напряжение на обкладках конденсатора равны нулю, и наоборот. Этот же вывод следует из анализа рис. 2 (а, б, в, г, д).

Идеальный колебательный контур (рис. 3), в котором происходят свободные незатухающие электромагнитные колебания, представляет собой электрическую цепь, состоящую из конденсатора емкостью и катушки индуктивности . Запишем для этого замкнутого контура второе правило Кирхгофа: сумма падений напряжений равна сумме э. д.с., действующих в контуре.

В контуре действует только одна э. д.с. – э. д.с. самоиндукции, следовательно

,

где – падение напряжения на конденсаторе;

– мгновенное значение заряда на обкладках конденсатора;

.

Так как , , то дифференциальное уравнение свободных незатухающих электромагнитных колебаний может быть записано в виде

,

,

где – собственная циклическая частота контура.

Уравнение колебаний принимает вид

и называется уравнением свободных незатухающих электромагнитных колебаний в дифференциальной форме.

Из математики известно, что решение этого уравнения имеет вид

,

т. е. соответствует формуле (7) и рис. 4 (при ).

Таким образом, свободные незатухающие электромагнитные колебания являются гармоническими, а их период определяется формулой Томсона:

2. Закон сохранения и превращения энергии в идеализированном колебательном контуре

Исключительно важным является вопрос об энергии гармонических колебаний. С энергетической точки зрения гармоническое колебание представляет собой непрерывный процесс перехода кинетической энергии движущихся частей осциллятора в потенциальную энергию упругого элемента. Полная энергия гармонического осциллятора есть величина постоянная, так как для него потерь нет. Она равна либо максимальной кинетической энергии ( в момент прохождения положения равновесия) , либо максимальной потенциальной энергии (при амплитудном смешении). В задачах используются именно эти энергии, так как с их помощью можно оценить величину амплитуды и частоты собственных колебаний осциллятора.

Расчет энергии W гармонического осциллятора осуществляют стандартным образом. Для механических осцилляторов:

Электромагнитные колебания

теория по физике 🧲 колебания и волны

Заставить колебаться можно любую материю. Так, колебаться могут не только физические тела, состоящие из вещества, но и электромагнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Когда происходят колебания в механической системе, говорят, что тело совершает периодически повторяющиеся движения — оно отклоняется от положения равновесия то в одну, то в другую сторону. Когда происходят электромагнитные колебания, говорят, что электромагнитное поле периодически изменяется во времени, то есть его характеристики, то уменьшаются, то увеличиваются относительного некоторого среднего значения, которое является для них «положением равновесия».

Электромагнитные колебания — периодическое изменение во времени напряженности и индукции электромагнитного поля.

Напомним, что напряженность E представляет собой количественную характеристику электромагнитного поля, а индукция B — силовую. Причем электромагнитное поле — это взаимосвязанные между собой электрическое и магнитные поля. Так, проводник с током создает вокруг себя магнитное поле. Оно тем сильнее, чем выше сила тока в этом проводнике, которая напрямую зависит от напряжения в нем (или количества заряда, прошедшего через него за единицу времени). Поэтому изменения напряжения и силы тока в проводнике вызывают изменения напряженности и индукции магнитного поля. Следовательно, можно сделать вывод, что:

Электромагнитные колебания — периодические или почти периодические изменения во времени заряда, силы тока или напряжения.

Осциллограф

Но если колебания физических тел наблюдать легко, то колебания электромагнитного поля обнаружить без специальных приборов нельзя. Ведь увидеть изменения заряда, силы тока или напряжения невозможно. Использовать для этого электроизмерительные приборы (гальванометры, вольтметры или амперметры) тоже неудобно, поскольку электромагнитные колебания происходят с гораздо большей частотой по сравнению с механическими. Поэтому специально для визуализации электромагнитных колебаний был создан прибор, который называется осциллографом.

Осциллограф, схему которого вы видите ниже, представляет собой электронно-лучевую трубку. Через нее проходит узкий пучок электронов и попадает на экран, который начинает светиться при бомбардировке электронами.

На горизонтально отклоненные пластины трубки подается переменное напряжение развертки up пилообразной формы (см. рисунок ниже). Оно медленно нарастает и быстро падает. Поэтому электрическое поле между пластинами заставляет электронный луч пробегать экран в горизонтальном направлении с постоянной скоростью и затем почти мгновенно возвращаться назад. После этого весь процесс повторяется.

Если же присоединить вертикально отклоняющие пластины трубки к конденсатору, то колебания напряжения при его разрядке вызовут колебания луча в вертикальном направлении. В результате на экране осциллографа образуется временная развертка колебаний. Она напоминает синусоиду или косинусоиду подобно той, с помощью которой можно описать механические колебания.

С течением времени электромагнитные колебания затухают. Такие колебания являются свободными. Напомним, что свободными колебаниями называют такие колебания, которые возникают в колебательной системе после выведения ее из положения равновесия. В нашем случае система выводится из равновесия при сообщении конденсатору заряда. Зарядка конденсатора эквивалента отклонения математического маятника от положения равновесия.

В электрической цепи также можно получить вынужденные колебания, которые будут происходить до тех пор, пока на колебательную систему действует периодическая внешняя сила. Вынужденными электромагнитными колебаниями называют колебания в цепи под действием внешней периодической электродвижущей силы.

Колебательный контур

Колебательный контур — простейшая система, к которой могут происходить свободные электромагнитные колебания.

Колебательный контур состоит из конденсатора и катушки, присоединенной к его обкладкам (см. рисунок выше). Попробуем выяснить, почему в этом контуре возникают электромагнитные колебания. Для этого зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя (см. схему ниже).

При этом конденсатор получит энергию, равную:

W p = q 2 m a x 2 C . .

где q m a x — заряд конденсатора, а C — его электроемкость. Между обкладками конденсатора возникает разность потенциалов U m a x .

Теперь переведем переключатель в положение 2 (см. схему ниже). После этого конденсатор начнет разряжаться, и в цепи появится электрический ток. Сила тока достигнет максимального значения не сразу, а будет увеличиваться постепенно. Это объясняется явлением самоиндукции. При появлении тока возникает переменное магнитное поле. Это переменное магнитное поле порождает вихревое электрическое поле в проводнике. Вихревое электрическое поле при возрастании магнитного поля действует против тока и препятствует его мгновенному увеличению.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется формулой:

где i — сила переменного тока, L — индуктивность катушки.

Полная энергия W электромагнитного контура равна сумме энергий магнитного и электрического полей:

W = L i 2 2 . . + q 2 2 C . .

В момент, когда конденсатор полностью разрядится (q = 0), энергия электрического поля станет равной нулю. Но согласно закону сохранения энергии, максимальное значение обретет энергия магнитного поля. Сила тока в этот момент примет максимальное значение Imax.

К этому моменту разность потенциалов на концах катушки становится равной нулю. Но, несмотря на это, электрический ток не может исчезнуть сразу. Этому снова препятствует явление самоиндукции. Как только сила тока и созданное им магнитное поле начнут уменьшаться, возникает вихревое электрическое поле, которое поддерживает ток.

Конденсатор будет перезаряжаться до тех пор, пока сила тока, постепенно уменьшаясь, не станет равной нулю. Энергия магнитного поля в этот момент тоже будет равна нулю, а энергия электрического поля конденсатора опять будет максимальной. После этого конденсатор снова начнет перезаряжаться, и система вернется в исходное состояние.

Из-за частичных потерь энергии электромагнитные колебания являются затухающими. Если бы потерь не было, полная энергия система была бы постоянной и была бы равной:

W = L i 2 2 . . + q 2 2 C . . = q 2 m a x 2 C . . = L I 2 m a x 2 . .

Пример №1. После того как конденсатору колебательного контура был сообщен заряд q = 10 –5 Кл, в контуре возникли затухающие колебания. Какое количество теплоты выделится в контуре к тому времени, когда колебания в нем полностью затухнут? Емкость конденсатора C = 0,01 мкФ.

0,01 мкФ = 10 –8 Ф

Поскольку с каждым колебанием колебательный контур теряет часть энергии в виде выделения тепла, ко времени, когда колебания полностью затухнут, выделится полная электромагнитная энергия системы. Ее можно определить формулой:

Сходство электромагнитных колебаний в контуре со свободными механическими колебаниями

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями (к примеру, колебаниями тела, закрепленного на пружине). Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

Соответствие между механическими и электрическими величинами при колебательных процессах

Механическая величинаЭлектрическая величина
Координата xЗаряд q
Скорость v xСила тока i
Масса mИндуктивность L
Жесткость пружиныВеличина, обратная емкости 1 C . .
Потенциальная энергия растянутой пружины k x 2 2 . .Энергия электрического поля q 2 2 C . .
Кинетическая энергия m v 2 x 2 . .Энергия магнитного поля L i 2 2 . .

Уравнение, описывающее процессы в колебательном контуре

Рассмотрим колебательный контур, сопротивлением R которого можно пренебречь (см. схему ниже).

Полная электромагнитная энергия равна сумме энергий магнитного и электрического полей:

W = L i 2 2 . . + q 2 2 C . .

Если его сопротивление равно 0, то полная механическая энергия с течением времени не меняется. А производная константы равна нулю. Следовательно, сумма производных от каждой составляющей этой энергии также равна нулю.

( L i 2 2 . . ) ′ + ( q 2 2 C . . ) ′ = 0

( L i 2 2 . . ) ′ = − ( q 2 2 C . . ) ′

Первая производная по времени характеризует скорость изменения физической величины. Следовательно, эта формула позволяет сделать вывод о том, что скорость изменения энергии магнитного поля равна скорости изменения электрического поля. Знак «минус» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля уменьшается (и наоборот).

Вычислив обе производные, получим:

Но производная заряда по времени представляет собой силу тока в данный момент времени:

i = lim Δ t → 0 . Δ q Δ t . . = q ′

Поэтому мы можем записать уравнение иначе:

Производная силы тока по времени представляет собой вторую производную заряда по времени:

Подставив это равенство в уравнение, и преобразовав его путем деления на величину Li, получим основное уравнение, описывающее свободные электрические колебания в контуре:

Формула Томсона

Когда мы рассматривали механические колебания, то вводили величину, постоянную для конкретной колебательной системы — коэффициент k m . . . Он представляет собой квадрат собственной частоты колебаний. По аналогии в случае с электромагнитными колебаниями этот коэффициент равен 1 L C . . . Он также представляет собой квадрат циклической частоты свободных электрических колебаний:

Следовательно, период свободных колебаний в контуре равен:

T = 2 π ω 0 . . = 2 π √ L C

Эта формула называется формулой Томсона.

Пример №2. Колебательный контур состоит из катушки индуктивностью L = 0,003 Гн и плоского конденсатора емкостью C = 13,4 пФ. Определите период свободных колебаний в контуре.

13,4 пФ = 13,4∙10 –12 Ф

Гармонические колебания заряда и тока

Заряд конденсатора меняется с течением времени подобно тому, как координата при механических колебаниях изменяется со временем по гармоническому закону (в случае, когда в начальный момент времени отклонение от положения равновесия максимально):

q = q m a x cos . ω 0 t

где q m a x — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

i = q ‘ = − ω 0 q m a x sin . ω 0 t = I m a x cos . ( ω 0 t + π 2 . . )

где I m a x — амплитуда колебаний силы тока, равная произведению циклической частоты на амплитуду колебаний заряда:

I m a x = q m a x ω 0

Колебания силы тока опережают по фазе на π 2 . . колебания заряда, что хорошо видно на рисунке ниже.

Пример №3. В двух идеальных колебательных контурах с одинаковой индуктивностью происходят свободные электромагнитные колебания, причём период колебаний в первом контуре 9⋅10 −8 с, во втором 3⋅10 −8 с. Во сколько раз амплитудное значение силы тока во втором контуре больше, чем в первом, если максимальный заряд конденсаторов в обоих случаях одинаков?

Максимальная сила тока равна:

I m a x = q m a x ω 0

Так как максимальный заряд конденсаторов одинаков в обоих контурах, отношение силы тока во тором контуре к силе ток в первом контуре равно:

I 2 m a x I 1 m a x . . = q m a x ω 02 q m a x ω 01 . . = ω 02 ω 01 . .

Циклическую частоту выразим из формулы Томсона:

Автоколебания

Незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического напряжения. Но существует способ создания незатухающих колебаний, при котором колебательная система сама регулирует поступление энергии в колебательный контур для компенсации потерь энергии на резисторе.

Автоколебательные системы — системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника тока внутри системы.

Автоколебания — незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил.

Самый простой пример автоколебательной системы — это генератор на транзисторе. Транзистор представляет собой полупроводниковое устройство, состоящее из эмиттера, базы и коллектора и имеющее 2 p–n перехода. Колебания тока в контуре вызывают колебания напряжения между эмиттером и базой, которые, в свою очередь, управляют силой тока в цепи колебательного контура (обратная связь). От источника напряжения в контур поступает энергия, компенсирующая потери энергии в контуре на транзисторе.

Схема автоколебательной системы представлена ниже.

Преимуществом такой схемы является то, что конденсатор при этом подключается к источнику тока только тогда, когда присоединенная к положительному источнику тока пластина конденсатора заряжена положительно (рис. а). Только в этом случае конденсатор восполняет потери энергии, выделенной на резисторе.

Если бы источник тока был включен всегда, восполнения потерь не происходило бы. Поскольку конденсатор разряжался бы в момент, когда он соединен с источником тока пластиной, заряженной отрицательно (рис. б).

В двух идеальных колебательных контурах происходят незатухающие электромагнитные колебания. Максимальное значение заряда конденсатора во втором контуре равно 6 мкКл. Амплитуда колебаний силы тока в первом контуре в 2 раза меньше, а период его колебаний в 3 раза меньше, чем во втором контуре. Определите максимальное значение заряда конденсатора в первом контуре.

Свободные электромагнитные колебания в контуре (Порохов Д.А.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Успехи развития электромагнетизма конца XVIII века послужили бурному развитию промышленности и техники, основанной на использовании свойств постоянного и в дальнейшем переменного тока. Прежде всего, это средство передачи информации – телеграф. Однако по мере развития телеграфа инженеры и пользователи начали сталкиваться с весьма любопытными и, казалось, необъяснимыми фактами и явлениями. В начале XX века английский ученый Уильям Томсон заинтересовался неудачами инженеров, прокладывающих трансатлантический телеграф. Он теоретически изучил законы распространения электрических импульсов по кабелям и пришел к выводам, имеющим огромную практическую ценность, и тем самым способствовал прокладке трансатлантического телеграфа между Европой и США. Вместе с тем он разработал теорию электрических колебаний, которая легла в основу современной теории электромагнитных колебаний. Мы с вами начнем рассматривать элементы теории электромагнитных колебаний, разработанных Уильямом Томсоном. Тема сегодняшнего урока: «Свободные электромагнитные колебания и их описание».


источники:

http://spadilo.ru/elektromagnitnye-kolebaniya/

http://interneturok.ru/lesson/physics/11-klass/belektromagnitnye-kolebaniya-i-volny-b/svobodnye-elektromagnitnye-kolebaniya-v-konture