Уравнение определение опорных моментов называется

Как определить реакции в опорах?

Автор: Константин Вавилов · Опубликовано 03.02.2016 · Обновлено 15.05.2018

Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Что такое реакция опоры?

Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.

В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!

Что вы должны уже уметь?

В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.

Должны уметь находить сумму проекций сил

Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!

Должны уметь составлять сумму моментов относительно точки

Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:

На изображении показано, как определить момент силы F, относительно точки O.

Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:

  • Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
  • Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.

Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.

Должны разбираться в основных видах опор

Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.

Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.

Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.

Примеры определения сил реакций опор

Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.

Определение реакций опор для балки

Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:

Для этой расчетной схемы, выгодно записать такое условие равновесия:
То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.

Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:

Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB.

Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:

После нахождения реакций, делаем проверку:

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:


Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Определение опорных реакций для плоской рамы

Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим глобальную систему координат x и y.

Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:

Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:

Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:

И, наконец, третье уравнение, позволит найти реакцию RA:

Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.

Расчет же показал, что RA, направленна в другую сторону:

В итоге, получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!

Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂

Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.

Опоры и опорные реакции, и их определение

Лекция №1

Тема: «Внутренние усилия в поперечных сечениях стержня»

Вопросы:

Метод сечений для определения внутренних сил

Напряжения

Опоры и опорные реакции, и их определение

Поперечная сила и изгибающий момент

Метод сечений для определения внутренних сил

Как уже отмечалось, до приложения к телу нагрузки, внутри его не возникает внутренних усилий (4-е допущение). При приложении внешних сил или моментов внутри тела появляются внутренние силовые факторы. Их определяют методом сечений. Для этого в интересующем нас месте делается мысленный разрез, отбрасывается одна часть тела (обычно та, на которую действует больше сил), а ее воздействие на оставшуюся заменяется внутренними силовыми факторами, значение которых находят из уравнений статического равновесия рассматриваемой части тела.

Возможны два варианта решения задачи:

а) внешние силы и моменты находятся в одной плоскости, проходящей через центр тяжести сечения (плоская задача);

б) внешние силы и моменты не находятся в одной плоскости (пространственная задача).

Рассмотрим плоскую задачу. Пусть на тело (рисунок 1) действует система сил, лежащих в одной плоскости и оно находится в статическом равновесии. Определим внутренние усилия в сечении 1-1. Отбрасываем правую часть тела, а ее воздействие на левую заменим на три силовые факторы: продольную силу N, направленную перпендикулярно плоскости сечения; поперечную силу Q, лежащую в плоскости сечения (на рисунке она несколько смещена вправо для того, чтобы она не сливалась с сечением); изгибающий момент М, плоскость действия которого перпендикулярна плоскости сечения.

Рисунок 1

Для нахождения внутренних силовых факторов проведем оси координат через центр тяжести сечения OX, OY и составим уравнения статического равновесия:

; ;

где и соответственно проекции сил и на ось OY.

.

; ;

где и – соответственно проекции сил и на ось OX.

;

где a1 и a2 плечи сил и , т.е. кратчайшие стояния от точки 0 до направления действия сил (плечо a2 не показано, чтобы не усложнять рисунок).

Аналогично определяют усилия в сечениях 2-2, 3-3 и т.д. по всей длине тела. Определив значения N, Q и M строят эпюры (графики) каждого внутреннего усилия в отдельности. По эпюрам находят опасное сечение (сечения). Опасным считают сечение, где одно из внутренних усилий имеет максимальное значение. Это важно при расчете брусьев постоянного сечения (стержней), так как там, где внутреннее усилие максимально, возможна потеря прочности. А если прочность обеспечена в опасном сечении, то она обеспечена для всего стержня.

При плоской задаче опасных сечений может быть три. При некоторых видах нагружения два из трех внутренних усилий могут быть равны нулю, и тогда будет одно опасное сечение. Возможен также вариант, когда все внутренние усилия имеют максимум в одном сечении. Тогда тоже будет одно опасное сечение.

Рассмотрим пространственную задачу, т.е. когда внешние силы и моменты не лежат в одной плоскости (рисунок 2).

Рисунок 2

Внутренних усилий будет шесть: три силы и три момента, т.е. одна сила и один момент относительно каждой оси координат (две силы или два момента относительно одной оси быть не может, так как они сложатся и будет результатируюшая, т.е. одна сила или момент).

Сила, перпендикулярная сечению, называется продольной N и направлена по оси Z. Сила, лежащая в плоскости сечения, называется поперечной Q. Их будет две: вдоль осей Y и X соответственно Qy и Qx. Эти силы можно сложить по правилу параллелограмма и получить одну силу Q. Моменты Mx и My действуют перпендикулярно плоскости сечения, поэтому являются изгибающими. Момент Mz лежит в плоскости сечения и называется крутящим моментом Т.

Для пространственной задачи составляется шесть уравнений статического равновесия:

; определяем ;

; определяем ;

; определяем ;

; определяем ;

; определяем ;

; определяем .

Возможны следующие частные случаи возникновения внутренних усилий в сечении:

а) только продольная сила N. Это случай растяжения (сила направлена от сечения) или сжатия (сила направлена внутрь тела);

б) только поперечная сила Q.Это случай сдвига;

в) только крутящий момент Т. Это случай кручения;

г) только изгибающий момент Мх или только изгибающий момент Му. Это случай изгиба.

д) Несколько внутренних усилий, например, Мх и Му вместе. Это случай сложного сопротивления.

Напряжения

Внутренние усилия действуют не в одной какой-либо точке, а распределены по всему сечению, причем интенсивность их, т.е. отношение внутреннего усилия к площади сечения, в разных точках может быть различной. Интенсивность внутренних усилий называют также механическим напряжением или просто напряжением.

Напряжение – это внутренняя сила, приходящаяся на единицу площади в данной точке данного сечения. Размерность напряжения сила/площадь. Единица измерения – паскаль.

Паскаль величина небольшая. Его можно представить как давление 100 г воды, разлитой на 1 м 2 поверхности. Прочность всех материалов измеряется в миллионах Па, поэтому применяют математическую приставку “мега”, т.е. миллион.

Рисунок 3

Полное напряжение р можно разложить на две составляющие (рисунок 3):

а) нормальную к плоскости сечения, называемую нормальным напряжением s;

б) лежащую в плоскости сечения, называемую касательным напряжением t.

Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальные напряжения возникают, когда частицы материала стремятся отдалится друг от друга или наоборот, сблизится. Касательные напряжения связаны со сдвигом частиц материала по плоскости рассматриваемого сечения.

Опоры и опорные реакции, и их определение

При расчете конструкций в основном встречаются элементы, испытывающие изгиб. Стержни, работающие преимущественно на изгиб, называют балками. Для того чтобы балка могла испытывать нагрузку и передавать ее на основание, она должна быть соединена с ним опорными связями. На практике применяют несколько типов опорных связей, или, как говорят, несколько типов опор.

Различают три основных типа опор:

а) шарнирно-подвижная опора:

б) шарнирно-неподвижная опора:

в) жесткая заделка.

Рисунок 4

На рисунке 4 показана шарнирно-подвижная опора, такая опора позволяет балке свободно поворачиваться и перемещаться в горизонтальном направлении. Поэтому реакция в опоре будет одна — вертикальная сила. Условное обозначение такой опоры показано справа.

Рисунок 5

На рисунке 5 показана шарнирно-неподвижная опора. Такая опора позволяет балке свободно поворачиваться, но перемещаться она не может. Поэтому могут возникать две реакции — вертикальная и горизонтальная силы. Их можно сложить и получить одну результатирующую силу, но нужно знать угол, под которым oна будет направлена. Более удобно будет пользоваться вертикальной и горизонтальной составляющими реакции.

На рисунке 6 показана жесткая заделка. Она не позволяет балке ни поворачиваться, ни перемещаться. Поэтому могут возникать три опорные реакции: момент, вертикальная и горизонтальная силы. Если балка не имеет на конце опоры, то эта часть ее называется консолью.

Рисунок 6

Определим реакции опор для балки (см. рисунок 7).

Рисунок 7

В опоре А горизонтальная реакция равна нулю, так как распределенная нагрузка q и сосредоточенная сила F имеют вертикальное направление. Реакции опор направим вверх. Составим два уравнения статического равновесия сил. Сумма моментов относительно каждой из опор равна нулю. Уравнения моментов нужно составлять относительно опор, так как в этом случае получаются уравнения с одним неизвестным. Если составить уравнения относительно точек В и С, то получим уравнения с двумя неизвестными, а их решать сложнее. Моменты против часовой стрелки будем считать положительными, по часовой — отрицательными.

где — момент от равномерно распределенной нагрузки.

Произведение q на расстояние, на котором она приложена, из условия равновесия системы равно сосредоточенной силе, приложенной посредине отрезка. Поэтому момент равен:

– момент силы F

Внешний момент m на плечо не умножается, так какэто пара сил, т.е. две равные по величине, противоположно направленные силы, имеющие постоянное плечо.

.

Проверка: Сумма всех сил на вертикальную ось Y должна быть равна нулю:

.

Момент m в условие статического равновесия не записывают, так как момент — это две равные по величине, противоположно направленные силы и в проекции на любую ось они дадут ноль.

Как определить реакции опор или найти опорные реакции: для балки или рамы

Что такое реакция опоры или опорная реакция?

Реакция опоры или опорная реакция – это силовой фактор, возникающий в опоре, от действия на конструкцию внешней нагрузки. В опорах, как правило, возникают реактивные силы, которые для удобства ручного расчета раскладываются на две составляющие: вертикальную и горизонтальную проекции. В жестких заделках, которые ограничивают все степени свободы конструкций, в том числе поворот сечений, также могут появляться реактивные моменты.

Зачем определять реакции опор?

На элементы конструкций всегда наложены какие-то связи, в виде опор, жестких заделок, стержней, которые ограничивают степени свободы конструкций. Под действием внешней нагрузки в этих связях возникают реакции. И эти реакции опор нужно обязательно учитывать при расчетах на прочность, жесткость и т. д., так как они являются внешними нагрузками. Практически любая задача по сопромату начинается с нахождения реакций связей, именно поэтому статья будет одной из первых на этом сайте.

Пример определения опорных реакций для балки

Давайте рассмотрим пример, на котором я покажу как определяются реакции опор. Причем, постараюсь объяснить максимально просто, буквально на пальцах.

Возьмем простую балку, загруженную сосредоточенной силой F, под действием которой в опорах появляются реакции RA и RB. Также сразу вводим систему координат x, y:

Чтобы узнать численное значение эти реакций, воспользуемся первой формой уравнений равновесия:

Первое уравнение равновесия

Записываем первое уравнение. Так как оси x не параллельна ни одна из сил, то соответственно сумма проекций сил на эту ось будет равна нулю:

Таким будет первое уравнение для этой расчетной схемы.

Второе уравнение равновесия

Второе уравнение, связанно с проекциями на вертикальную ось. Здесь все намного лучше, все силы параллельны этой оси, а значит дадут проекции. Вопрос только с каким знаком, каждая сила пойдет в уравнение. Если направление силы, совпадает с направлением оси, то в уравнение она пойдет со знаком «плюс» (RA и RB). Если же сила направленна в противоположную сторону, как F, в нашем случае, то в уравнении будем записывать ее с минусом. Таким образом, получим второе уравнение равновесия:

Как видите, во втором уравнении у нас находится 2 неизвестные реакции. Чтобы, наконец, решить задачу, давайте запишем третье уравнение равновесия.

Третье уравнение равновесия

Это уравнение отличается от первых двух, так как тут речь идет о моментах. Напомню, момент – это произведение силы на плечо. В свою очередь, плечо – это перпендикуляр, опущенный от центра момента до линии действия силы. То есть это кратчайшее расстояние от центра момента до силы. В качестве центра моментов у нас назначена точка A, по условию сумма моментов всех сил должна быть равна нулю относительно этой точки.

Начинаем рассуждать и записывать уравнение. Реакция RA не дает момента, относительно точки А, так как линия действия этой силы пересекает эту точку и соответственно плечо равно нулю. А там, где нет плеча, нет и момента.

Сила F, относительно точки А, создает момент равный:

Обратите внимание, плечо в данном случае равно 2 метрам. Кроме того, важен знак момента, для этого традиционно используется правило, которое продвинутым студентам известно еще с теоретической механики:

  • Если сила, относительно произвольного центра, поворачивает ПРОТИВ часовой стрелки, то момент силы положительный;
  • Если сила, относительно произвольного центра, поворачивает ПО часовой стрелке, то момент силы отрицательный.

Для силы F, как видите, момент отрицательный:

Реакция опоры — RB, создает момент равный RB · 4, так как сила поворачивает против часовой стрелки, то в уравнение записываем его со знаком плюс:

Вычисление реакций опор

Вот собственно и все, все уравнения составлены. Теперь осталось только решить их и найти искомые значения реакций опор (F=2 кН):

В этой статье, мы рассмотрели достаточно простой пример. Если вы хотите развить свои навыки по определению реакций опор, узнать различные хитрости по их нахождению, научится определять реакции, когда на конструкцию действуют силы под различными углами, учитывать в уравнениях сосредоточенные моменты и распределенную нагрузку, приступайте к изучению статьи – как определить реакции опор для балки.


источники:

http://poisk-ru.ru/s10594t15.html

http://sopromats.ru/sopromat/opredelenie-reaktsiy-opor/