Уравнение падающего и отражающегося лучей

Закон отражения света: определение, формула, применение

Определение.

Закон отражения света имеет следующее определение: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости. Более подробно о физическом смысле закона и о том на базе чего он был сформулирован читайте далее в этой статье.

Небольшое вступление.

Если вы не знаете, что находится по ту сторону зеркала, спросите физика! Он скажет вам, что вы найдете там не перевернутую копию нашего мира, а другой, столь же загадочный мир физики. Он произнесет множество благозвучных физических названий, таких как видимый образ, закон отражения и луч света.

Хотя сегодня мы не можем представить себе жизнь без зеркал, или плоских стеклянных зеркал, их история не особенно длинна. Однако само явление отражения, благодаря которому зеркала могут существовать и работать, известно уже много веков и не менее увлекательно, чем они сами.

Явление отражения света

Проведите наблюдение, которое позволит вам понять механизм формирования изображения при отражении световых лучей, как вы это наблюдаете на поверхности зеркала или поверхности воды.

Что вам понадобится?

  • зеркало без рамы;
  • фонарик с сильным светом (он может быть встроенным в телефон);
  • расчёска;
  • лист бумаги;
  • линейка;
  • карандаш;
  • широкий пластырь или серебристая изоляционная лента.

Инструкция.

  1. Нанесите ленту на зубья расчески так, чтобы в середине остались один или два зазора.
  2. На листе бумаги проведите линию, перпендикулярную длинному краю бумаги.
  3. На тот же край листа бумаги, лежащего на столе, вертикально положите отражающую сторону зеркала.
  4. Положите расческу на стол вдоль длинного края бумаги напротив зеркала так, чтобы кончики зубцов были перпендикулярны столешнице.
  5. Осветите расческу, чтобы один или два луча света прошли через незапечатанные щели.
  6. Осветите зеркало так, чтобы свет фонарика падал на точку, где нарисованная линия пересекается с поверхностью зеркала.
  7. Изменяйте угол освещения зеркала, располагая расческу под разными углами к листу бумаги — всегда держите фонарик так, чтобы свет падал на расческу перпендикулярно.
  8. Что происходит с лучом света, отраженным от зеркала?

Подведём итог эксперимента.

Для того чтобы избежать двусмысленности в описании наблюдаемого нами явления, следует сначала выучить определения нескольких терминов.

В физике все гладкие поверхности, отражающие свет, называются зеркалами. Линия, перпендикулярная поверхности зеркала, называется нормалью. Свет фонаря падал в точку, где перпендикуляр (нормаль) пересекался с поверхностью зеркала. Угол между падающим лучом и перпендикуляром называется углом падения. Падающий луч отражается от поверхности зеркала, и получается отраженный луч. Угол между отраженным лучом и перпендикуляром называется углом отражения.

Наблюдения показали, что изменение угла, под которым свет фонаря падает на зеркало после прохождения через расчёску, влечет за собой изменение угла, под которым отражается падающий свет. Когда угол падения увеличивается, угол его отражения также увеличивается; когда он уменьшается, угол отражения также уменьшается.

Закона отражения света

Изменяя угол падения, мы одновременно изменяем угол отражения. Угол падения и угол отражения вместе с перпендикуляром лежат в одной плоскости и равны друг другу.

Иллюстрация закона отражения света

Формулировка закона и его формула.

Закон отражения света гласит так: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости.

В виде формулы закон отражения света записывается следующим образом: ∠ α = ∠ β.

Применение

Закон отражения используется во многих оптических системах. Повседневное значение имеют применения, описанные ниже.

Закон отражения используется для всех типов зеркал (плоские зеркала, вогнутые зеркала, выпуклые зеркала, параболические зеркала) и их применения (например, фары, фонари, косметические зеркала).

Он также используется для светоотражателей, которые должны быть установлены, например, на велосипедах. Они имеют гладкие стеклянные или пластиковые поверхности снаружи и множество маленьких призм внутри, на которых свет отражается таким образом, что выходит в том же направлении, откуда вошел. Поэтому велосипеды, находящиеся точно по направлению движения автомобиля, могут быть распознаны в темноте гораздо раньше, чем это было бы возможно без дополнительного оснащения светоотражателями.

Также закон отражения должен соблюдаться и в других местах. Гладкая поверхность воды отражает свет. И в тоже время, отражение тел видно на поверхности воды.

В помещениях, освещаемых сфокусированными прожекторами — например, на сцене театра — установка больших стеклопакетов может быть запрещена строительными нормами. Это связано с тем, что стекла воспринимаются только в том случае, если глаз смотрит на отраженный луч света. Для всех остальных людей существует опасность столкнуться со стеклом. В музеях, где много стеклянных витрин с точечным освещением, можно неоднократно наблюдать, как гости ударяются головой о стеклянную обшивку, потому что не заметили само стекло. Поэтому комнаты с большим количеством стеклянных витрин должны иметь рассеянное освещение.

Обратимость световых лучей

Световые пути обычно обратимы. Что это значит, показано на двух рисунках на рис. 2 на простом примере.

В левом изображении на рис. 2 свет исходит слева и отражается от зеркала. Читая угловую шкалу, можно увидеть, что закон отражения выполняется.

В правом изображении на рис. 2 луч света падает на зеркало точно с того направления, в котором луч света был отражен ранее. Вы видите, что теперь отраженный луч света проходит точно там же, где раньше проходил луч падающего света: поэтому путь света является обратимым.

Обратимость светового пути является важным основным принципом геометрической оптики, а также применима к гораздо более сложным явлениям, например, к преломлению света на воде.

Законы отражения света

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

1Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
2Угол отражения γ равен углу падения α :

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

Законы отражения света в физике — виды, формулы и определения с примерами

Содержание:

Закон отражения света:

Когда свет падает на поверхность какого-либо тела, часть света отражается от поверхности и распространяется. Такое явление называют отражением света.

Поверхности тел могут быть гладкими или шероховатыми. Когда, находясь в комнате, мы смотрим на шероховатую поверхность, например на поверхность стола, пола, стены, мы видим эту поверхность. А вот поверхность чистого зеркала невидима, зато в зеркале видно изображение предметов (рис. 118). Если поверхность зеркала последовательно покрывать слоями разведенного в воде мела, изображение в конце концов исчезнет, и мы будем наблюдать шероховатую поверхность — слой мела. Тщательным образом отполировав одну из граней медного бруска, мы можем сделать его поверхность зеркальной. Существуют также и естественные зеркальные поверхности, например спокойная водная поверхность озера (рис. 119).

Рассмотрим, как свет отражается от зеркальной поверхности.

Опыт. С помощью специального прибора (рис. 120, а) направим на зеркальную поверхность в точку О пучок света так, чтобы луч света ОА (рис. 120, б) лежал в плоскости прибора. Дойдя до поверхности, пучок света изменяет направление своего распространения — происходит отражение света.

В результате опыта увидим, что отраженный луч света ОБ также лежит в плоскости прибора. Будем изменять направление падающего луча света, передвигая источник света, при этом будет изменяться и направление отраженного луча света с сохранением всех его свойств. Но оба луча света будут всегда лежать в плоскости прибора. Таким образом, мы установили первый закон отражения света.

Падающий луч света, отраженный луч света и перпендикуляр, проведенный в точку падения света, лежат в одной плоскости.

Этот опыт дает нам возможность установить и второй закон отражения света.

Прямая MN — зеркальная поверхность, АО — падающий луч света, ОВ -отраженный луч света, ОС — перпендикуляр к поверхности в точке падения света. Угол, образованный падающим лучом света и перпендикуляром ОС, называют углом падения света. Его обозначают буквой а (альфа). Угол, образованный отраженным лучом света ОВ и перпендикуляром ОС, называют углом отражения света. Его обозначают буквой р (бета).

Измерив транспортиром угол падения света и угол отражения света, видим, что эти углы равны между собой. Следовательно, мы установили второй закон отражения света.

Угол отражения луча

Угол отражения луча света равен углу падения луча света.

Если поверхность зеркала является плоскостью, такое зеркало называют плоским зеркалом.

Случается, что человек ошибается, полагаясь только на свои зрительные ощущения. Например, глядя в зеркало, нам кажется, что предметы, которые в действительности расположены перед зеркалом, находятся за ним. Как это объяснить?

Дело в особенностях нашего зрения и восприятия. Мы имеем прирожденную способность видеть любой предмет или его части только в прямолинейном направлении, по которому свет от источника света, например свечи, или освещенного предмета непосредственно попадает в наши глаза (рис. 121).

Глядя в плоское зеркало, мы не смотрим на предмет, который находится перед ним, однако свет от предмета все же попадает в наши глаза, отразившись от зеркала. Поэтому в нашем сознании возникает образ предмета. Поскольку отраженный от зеркала свет распространяется прямолинейно, нам кажется, что мы видим предмет прямо перед нами, а не там, где он в действительности находится, за зеркалом. Рисунок 122 наглядно это объясняет.

Поэтому говорят, что в зеркале мы видим мнимое прямое изображение предмета.

Глядя в зеркало, вы видите свое мнимое изображение.

Изображение предмета в плоском зеркале — мнимое, прямое.

Разместим вертикально кусок плоского стекла в качестве зеркала (рис. 123, а). Поскольку стекло прозрачно, мы видим предметы, находящиеся за ним. Возьмем две свечи, зажжем одну из них и поставим эту свечу перед стеклом. Как в зеркале, мы увидим в стекле изображение горящей свечи. Вторую свечу разместим с обратной стороны стекла так, чтобы казалось, что она также горит и, таким образом, совместим вторую свечу с изображением первой. Измеряем расстояние между стеклом и каждой из свеч (рис. 123, б). Оказывается, что эти расстояния одинаковы.

Предмет и его изображение в плоском зеркале всегда расположены на одинаковом расстоянии от зеркала.

Опыты показывают, что высота изображения свечи равна высоте самой свечи.

Размеры изображения предмета в плоском зеркале равняются размерам самого предмета.

Изображение предмета в плоском зеркале имеет еще одну особенность. Посмотрите на изображение вашей левой руки в плоском зеркале. Пальцы на изображении расположены так, будто это ваша правая рука (рис. 124).

Все рассмотренные особенности изображения предмета в плоском зеркале дают возможность сделать вывод: изображение предмета в плоском зеркале симметрично самому предмету.

Наблюдение. Подойдите к зеркалу и посмотрите на свое изображение. Вы видите, что изображение вашего тела имеет те же размеры, что и вы сами. Отойдите от зеркала или подойдите к нему ближе. Ваше изображение переместится на то же расстояние. Поднимите левую руку. Ваше изображение поднимет правую руку.

В плоском зеркале вы видите изображение предметов, которые почти не отличаются от самих предметов. Это объясняется тем, что зеркало отражает от 70 до 90 % падающего на него света, а его поверхность плоская и гладкая.

Белая бумага или снег также отражают значительную часть света — до 85 %, но, смотря на чистый лист бумаги, вы не увидите изображений каких-либо предметов, находящихся рядом, а только ровную белую поверхность. Следовательно, свет отражается не только от зеркальных поверхностей. Лучи света отражаются от любого предмета, не пропускающего свет. Если поверхность предмета шероховатая (неровная или матовая), отдельные световые лучи отражаются от нее не в одном, а в разных направлениях (рис. 125). Такой свет называют рассеянным, а поверхность — рассеивающей.

Благодаря рассеянному свету мы видим предметы и в тех местах, куда прямые солнечные лучи не проникают, например в комнате: сюда чаще всего попадает солнечный свет, рассеянный тучами, деревьями, домами.

Пример №1

Какой из лучей отражается под большим углом, а какой — под меншим (рис. 126)?

Ответ: луч 1 под большим, 2 — под меньшим.

Пример №2

При каком условии движение человека относительно зеркала не изменит его положения относительно изображения?

Ответ: когда человек движется параллельно поверхности зеркала.

Законы отражения света

Большинство объектов, которые нас окружают, — дома, деревья, наши одноклассники и т. п. — не являются источниками света. Тем не менее мы их видим. Ответ на вопрос «Почему так?» вы найдете в этом параграфе.

Почему мы видим тела, не являющиеся источниками света

Вы уже знаете, что свет в прозрачной однородной среде распространяется прямолинейно. Если же на пути распространения пучка света расположено какое-либо тело, то свет частично отражается от него по определенным законам. Некоторые отраженные лучи попадают в наши глаза, и мы видим это тело (рис. 3.20).

Законы отражения света

Для установления законов отражения света воспользуемся специальным прибором — оптической шайбой . Сначала закрепим зеркало в центре оптической шайбы. Потом направим на зеркало узкий пучок света от осветителя так, чтобы он давал на поверхности шайбы светлую полоску. Мы увидим, что отраженный пучок также даст на поверхности шайбы светлую полоску (рис. 3.21).

Зададим направление падающего пучка света лучом СО. Этот луч называют падающим лучом. Луч ОК, который задает направление отраженного пучка света, называют отраженным лучом. Из точки О падения луча восстановим перпендикуляр ОВ к поверхности зеркала, на которую падает свет. Обратите внимание на то, что перпендикуляр ОВ. падающий луч СО и отраженный луч ОК лежат в плоскости поверхности шайбы.

Угол а , образованный падающим лучом СО и перпендикуляром ОВ. называют углом падения.

*Оптическая шайба — это белый диск, по кругу которого нанесены деления, а на краю установлен осветитель.

Угол образованный отраженным лучом ОК и перпендикуляром OR. называют углом отражения.

Если измерить угол и и угол , то можно убедиться, что эти углы являются равными. Передвинув источник света по краю диска, изменим угол падения светового пучка. Соответственно изменится и угол отражения (рис. 3.22). Передвигая источник света дальше и измеряя время от времени углы падения и отражение света, убеждаемся: они каждый раз являются равными.

Итак, мы установили законы отражения света:

Первый закон: луч падающий, луч отри женный и перпендикуляр к поверхности отражения, восставленный из точки падения луча, лежат в одной плоскости.

Второй закон: угол отражения света равен углу падения.

Законы отражения света еще в III в. до нашей эры установил Эвклид.

Обратимость световых лучей

С помощью зеркала на оптической шайбе можно продемонстрировать также обратимость световых лучей. Если падающий луч направить по пути отраженного луча, то отраженный луч пойдет по пути падающего (рис. 3.23).

Итоги:

Все видимые тела отражают свет. Во время отражения выполняются два закона отражения света.

Первый закон: луч падающий, луч отраженный и перпендикуляр к поверхности отражения, восставленный из точки падения луча, лежат в одной плоскости.

Второй закон: угол отражения равен углу падения.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Зеркальное и рассеянное отражение света
  • Преломление света
  • Полное отражение
  • Дисперсия света
  • Геометрическая оптика в физике
  • Фотометрия и световой поток
  • Освещенность в физике
  • Закон прямолинейного распространения света

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://av-mag.ru/physics/index.php/optics/geometricheskaya-optika/luminous-reflectance/

http://www.evkova.org/zakonyi-otrazheniya-sveta-v-fizike